
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2007

Numerical analysis of heat transfer during jet
impingement on curved surfaces
Cesar F. Hernandez-Ontiveros
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Hernandez-Ontiveros, Cesar F., "Numerical analysis of heat transfer during jet impingement on curved surfaces" (2007). Graduate
Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2211

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

 
 

Numerical Analysis of Heat Transfer During Jet Impingement on  
 

Curved Surfaces 
 
 

 
 

by 
 
 

 
 

Cesar F. Hernandez-Ontiveros 
 

 
 

 
A thesis submitted in partial fulfillment 
   of the requirements for the degree of 

                             Master of Science in Mechanical Engineering 
Department of Mechanical Engineering 

College of Engineering 
University of South Florida 

 
 

 
 

Major Professor: Muhammad Mustafizur Rahman, Ph.D. 
Frank Pyrtle III, Ph.D. 
Autar Kaw, Ph.D. 

 
 
 

Date of Approval: 
March 30, 2007 

 
 

 
 
Keywords: steady state, transient analysis, hemispherical plate, cylindrical 

plate, heat flux 
 

© Copyright 2007, Cesar F. Hernandez-Ontiveros 
 



www.manaraa.com

 
 
 
 
 
 
 
 

Dedication 
 

 
To 
 
 

God 
 
  

My Father and Mother 
 
 
 
 

Without them this could not have been possible 
 
 
 
 

To  
 
 

My Advisor Professor Muhammad Mustafizur Rahman 
 
 
 
 

Thank you for your immense patience and guidance 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Acknowledgments 

 
 

To 
 

 
My Friends: Son H. Ho, Jorge C. Lallave, and Phaninder Injeti  

 
 

for their help and support throughout this very long journey! 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

 



www.manaraa.com

 i 

 
 
 
 
 

Table of Contents 
 

 
List of Figures                  iii 
 
List of Symbols                  x 
 
Abstract                 xiii 
 
Chapter 1 Introduction                 1 
  1.1 Literature Review              2 
  1.1.1 Round Jet Impingement             2 
  1.1.2 Slot Jet Impingement              4 
 1.2 Overview of Literature               8 
 1.3 Thesis Aim                8 
  
Chapter 2 Mathematical Models and Computation           10 
 2.1 Hemispherical Model              10 

2.1.1 Governing Equations : Steady State Heating         12 
2.1.2 Boundary Conditions : Steady State Heating         12 
2.1.3 Governing Equations : Transient Heating          14 
2.1.4 Boundary Conditions : Transient Heating          15 

 2.2 Cylindrical Plate Model              16 
2.2.1 Governing Equations: Steady State Heating         17 
2.2.2 Boundary Conditions : Steady State Heating         17 
2.2.3 Governing Equations : Transient Heating          19 
2.2.4 Boundary Conditions : Transient Heating          19 

 2.3 Numerical Computation             21 
  2.3.1 Steady State Process            21 
  2.3.2 Transient Process            23 
 2.4 Mesh Independence and Time Step Study           24 
  2.4.1 Cylindrical Coordinates            24 
  2.4.2 Cartesian Coordinates            26 
 
Chapter 3 Hemispherical Model Results             29 

3.1 Steady State Heating              29 
3.2 Transient Heating              52 

 
 
 



www.manaraa.com

 ii 

Chapter 4 Cylindrical Plate Model Results            66 
 4.1 Steady State Heating              66 
 4.2 Transient Heating              85 
 
Chapter 5 Discussion and Conclusions             98 
 
References               100 
 
Bibliography                        104 
 
Appendices                        105 
 Appendix A: CFD Code for Axisymetric Model                  106 
 Appendix B: CFD Code for 2-D Model                   114 
       



www.manaraa.com

 iii 

 
 
 
 
 

List of Figures 
 

Figure 2.1 Three Dimensional Schematic of a Hollow Hemisphere 
During an Axisymetric Liquid Jet Impingement 

 
11 
 

Figure 2.2 Cross-Sectional View of a Hollow Hemisphere During an 
Axisymetric Jet Impingement 
 

 
11 
 

Figure 2.3 Schematic View of a Curved Plate During a 2-D Symmetric  
Liquid Jet Impingement 
 

 
 16 

Figure 2.4   Mesh Plot of a Curved Plate During a 2-D Symmetric Liquid 
Jet Impingement 

 
 21 
 

Figure 2.5 Local Dimensionless Interface Temperature for Different 
Number of Elements in z (or r) and Φ Directions for Water 
as Fluid and Silicon as Solid (Re=750, b/dn=0.5, ß=2.0, 
q=250 kW/m2) 

 
 
  
 25 
 

Figure 2.6 Solid-Fluid Interface Dimensionless Maximum Temperature 
Variation for Silicon  Hemisphere at Different Time 
Increments (Re=750, b/dn=0.5, ß=2.0, Hn = 0.30 cm, q=250 
kW/m2) 

  
 
  
 26 
 

Figure 2.7 Local Dimensionless Interface Temperature for Different 

Number of Elements in x or φ, and y Directions (Re=750, 
ß=2.5, Hn = 0.30 cm) 

 
  
 27 
 

Figure 2.8  Solid-Fluid Interface Dimensionless Maximum Temperature 
Variation for Silicon Plate at Different Time Increments 
(Re=750, b/dn=0.5, ß=2.5, Hn = 0.30 cm, q=250 kW/m

2) 
 

 
 

28 

   
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 



www.manaraa.com

 iv 

Figure 3.1 
 
 

Velocity Vector Distribution for Silicon Hemisphere with 
Water as the Cooling Fluid (Re = 750, b = 0.60 mm, Q = 

5.665x10-7 m3/s,  β = 2.0, Hn = 0.30  cm, q = 250 kW/m
2
) 

 

 
 

30 
 

Figure 3.2 
 

Pressure Distribution for Silicon Hemisphere with Water as 
the Cooling Fluid (Re = 750, b = 0.60 mm, Q = 5.665x10-7 

m3/s,  β = 2.0, Hn = 0.30  cm, q = 250 kW/m
2) 

 

 
 

31 
 

Figure 3.3 Temperature Distribution for Silicon Hemisphere with Water 
as the Cooling Fluid (Re = 750, b = 0.60 mm, Q = 5.665x10-

7 m3/s,  β = 2.0, Hn = 0.30  cm, q = 250 kW/m
2) 

 

 
 

32 

Figure 3.4 Free Surface Height Distribution for Different Reynolds 
Numbers and Water  as the Cooling Fluid (b=0.60 mm, 

β=2.0, Hn=0.30 cm, q=250 kW/m
2)  

                                  

 
  
 33 

Figure 3.5 Dimensionless Interface Temperature Distribution for a 
Silicon Hemisphere at Different Reynolds Numbers, and 

Water as the Cooling Fluid (β=2.0, Hn= 0.30 cm, b=0.60 
mm, To=373 K) 
 

 
 
 

35 

Figure 3.6   Local Nusselt Number Distribution for a Silicon Hemisphere 
at Different Reynolds Numbers, and Water as the Cooling 

Fluid (β=2.0, Hn=0.30 cm, b=0.60 mm, To=373 K) 
 

 
 

 35 

Figure 3.7 Dimensionless Interface Temperature Distribution for a 
Silicon Hemispherical Plate at Different Reynolds Numbers, 

and Water as the Cooling Fluid (β=2.0, Hn= 0.30 cm, b=0.60 
mm, q=250 kW/m2) 
 

 
 
 

36 

Figure 3.8   Local Nusselt Number Distribution for a Silicon plate at 
Different Reynolds Numbers, and Water as the Cooling 

Fluid (β =2.0 , Hn = 0.30 cm, b=0.60 mm, q=250 kW/m
2) 

  

 
 
 37 

Figure 3.9    Average Nusselt Number and Heat Transfer Coefficient 
Variation for Different Reynolds Numbers for Constant Heat 
Flux (q=250kW/m2) and Isothermal (To = 373 K) Boundary 

Conditions (β=2.0, Hn = 0.30cm)  
 

 
 
 

 38 

Figure 3.10    Dimensionless Interface Temperature for Silicon Hemisphere 

at Different Nozzle to Target Spacing Ratio (β) for Water as 
the Cooling Fluid (Re=500, Q=3.776x10-7m3/s, dn=1.2mm, 
b=0.60 mm, q=250 kW/m2) 
 
 

 
 
 

39 



www.manaraa.com

 v 

Figure 3.11 Local Nusselt Number for Silicon Hemisphere at Different 

Nozzle to Target Spacing  Ratio (β) for Water as the Cooling 
Fluid (Re=500, Q=3.776x10-7 m3/s, dn=1.2mm, b=0.60mm, 
q=250kW/m2) 
 

 
 
 

 40 

Figure 3.12 Dimensionless Interface Temperature for Silicon 
Hemisphere at Different Thickness (b) for Water as the 
Cooling Fluid (Re=750, Q=5.665x10-7m3/s, dn=1.2mm, 
b=0.60 mm, q=250 kW/m2) 
 

 
 
 

 41 

Figure 3.13  Local Nusselt Number for Silicon Hemisphere at Different 
Thickness (b) for  Water as the Cooling Fluid (Re=750, 
Q=5.665x10-7 m3/s, dn=1.2mm, b=0.60mm, q=250kW/m

2) 
 

 
  
 42 

Figure 3.14 
 

Dimensionless Interface Temperature for Silicon Plate at  
Different Thickness (b) for Water as the Cooling Fluid     
(Re=750, Q=5.665x10-7m3/s, dn=1.2mm, b=0.60 mm, 
To=373 K) 
 

 
 
 

 43 
 

Figure 3.15     Local Nusselt Number for Silicon Hemisphere at Different 
Thickness (b) for Water as the Cooling Fluid (Re=750, 
Q=5.665x10-7 m3/s, dn=1.2mm, b=0.60mm, To=373 K) 
  

 
 

 44 

Figure 3.16 Dimensionless Interface Temperature for Silicon 
Hemispherical Plate for Different Cooling  Fluids (Re=750, 
Q=5.665x10-7m3/s, dn=1.2mm, b=0.60 mm, To=373 K) 
 

 
  
 45 
 

Figure 3.17 Local Nusselt Number for Silicon Hemisphere for Different 
Cooling Fluids (Re=750, Q=5.665x10-7 m3/s, dn=1.2mm, 
b=0.60mm, To=373 K) 
 

 
  

45 

Figure 3.18    Local Nusselt Number and Dimensionless Interface 
Temperature for Different Cooling Fluids (Re = 1500, 

Q=1.133x10-6m3/s, β=2.0, Hn=0.30 cm,  b=0.60 mm, q=250 
kW/m2) 
 

 
  
 

46 

Figure 3.19   Local Nusselt Number and Dimensionless Interface 
Temperature for Different Hemisphere Materials with Water 

as the Cooling Fluid (Re=1000, β=2.0,  b/dn=0.5, q=250 
kW/m2) 
 

 
 
 

48 

Figure 3.20 Dimensionless Interface Temperature for Silicon 
Hemispherical Plate for Different Materials (Re=750, 
Q=5.665x10-7m3/s, dn=1.2mm, b=0.60 mm, To=373 K) 
 

 
  
49 



www.manaraa.com

 vi 

Figure 3.21   Local Nusselt Number Distribution for Silicon Plate for 
Different Solid Materials (Re=750, Q=5.665x10-7 

m3/s, dn=1.2mm, b=0.60mm, To=373 K) 
 

 
 

50 

Figure 3.22 Stagnation Nusselt Number Compared with Liu et al. [36], 
Scholtz and Trass [37], and Nakoryakov et al. [38] with 
Actual Numerical Results under Different Reynolds 
Numbers  
 

 
 
 

 51 

Figure 3.23 Dimensionless Local Heat Flux Variation at the Solid-Fluid 
Interface for Silicon Hemisphere at Different Time Instants
(Re=750, b/dn=0.5, ß=2.5) 
 

 
 

 53 
 

Figure 3.24   Dimensionless Interface Temperature Variation for Silicon 
Hemisphere at Different Time Instants (Re=750, b/dn=0.5, 
ß=2.5) 
 

 
  
 54 

 
Figure 3.25. Local Nusselt Number Distribution for Silicon Hemisphere at 

Different Time Instants (Re=750, b/dn=0.5, ß=2.5) 
 

55 
 

Figure 3.26 Distribution of Dimensionless Maximum Temperature at the 
Solid-Fluid Interface, within the Solid, and Maximum-to-
Minimum Temperature Difference with Time for Two 
Reynolds Numbers (Silicon Hemisphere, b/dn=0.5, ß=2.5) 
 

 
 
 

 56  
 

Figure 3.27   Variation of Average Nusselt Number with Time For Silicon 
Hemisphere at Two Different Reynolds Numbers (b/dn=0.5, 
ß=2.5) 

 
  
 57 
 

Figure 3.28   Time Required to Reach Steady-State for Silicon 
Hemisphere at Different Reynolds Numbers (b/dn=0.5, 
ß=2.5) 
 

 
  

 58 
 

Figure 3.29   
 

Distribution of Dimensionless Maximum Temperature at the 
Solid-Fluid Interface, within the Solid, and Maximum-to-
Minimum Temperature Difference with Time for Different 
Plate Thicknesses (Silicon Hemisphere Re=750, ß=2.5) 
 

 
 
 

59 
 

Figure 3.30   Variation of Average Nusselt Number with Time for 
Constantan Hemisphere at Three Different Thicknesses 
(Re=750, ß=2.5) 
 

 
 

60 

 
 
 

 
 
 

 
 
 



www.manaraa.com

 vii 

Figure 3.31   Distribution of Dimensionless Maximum Temperature at the 
Solid-Fluid interface, within the Solid, and Maximum-to-
Minimum Temperature Difference with Time for Different 
Materials (Re=750, ß=2.5) 
 

 
 
 

 61 

Figure 3.32   Variation of Average Nusselt Number with Time for Different 
Materials (Re=750, b/dn,=0.5, ß=2.5) 
 

 
 62 
 

Figure 3.33    Time Needed to Reach Steady-State for Different 
Hemispherical Plate Thicknesses and for Different Materials 
(Re=750, ß=2.5)  
 

 
  
 63 

Figure 3.34    Isotherms Countour Lines at Varius Time Instants for Silicon 
Hemisphere Plate of b/dn=0.5 (Re=750, ß=2.5, Top Left 
Corner (z=0, r=0)) 

 
 
 64 
 

Figure 3.35    Isotherms Countour Lines at Varius Time Instants for Silicon 
Hemisphere Plate of b/dn=1.5 (Re=750, ß=2.5, Top Left 
Corner (z=0, r=0) 
 

 
 

 65 

Figure 4.1   Velocity Vector Distribution for a Silicon Curved Plate with 
Water as the Cooling Fluid (Re = 750, b= 0.60 mm, Q = 

5.665x10-7 m3/s,  β = 2.5, Hn = 0.3 cm, q = 250 kW/m
2) 

 

 
 

67 

Figure 4.2   Free Surface Height Distribution for Different Reynolds 

Numbers and Water as the Cooling Fluid (b=0.60 mm, β=2.0, 
Hn=0.30 cm, q=250 kW/m

2) 
 

 
  
 68 

 

Figure 4.3 Dimensionless Interface Temperature Distribution for a 
Silicon Curved Plate at Different Reynolds Numbers and 

Water as the Cooling Fluid (β=2.5, Hn= 0.30 cm, b=0.60 mm, 
q=250 kW/m2) 
 

 
 
  

69 

Figure 4.4   Local Nusselt Number Distribution for a Silicon Curved Plate 
at Different Reynolds Numbers and Water as the Cooling 

Fluid (β =2.5, Hn=0.30 cm, b=0.60 mm, q=250 kW/m
2) 

 

 
 

70 
  

Figure 4.5   Average Nusselt Number and Maximum Temperature Within 
the Solid for Different Reynolds Numbers for Constant Heat 

Flux Conditions (q = 250 KW/m
2, β=2.5, Hn = 0.30cm) 

 

 
 

71 

 
 
 
 

 
 
 
 

 
 
 
 



www.manaraa.com

 viii 

Figure 4.6   Dimensionless Interface Temperature for Silicon Curved 

Plate for Different Nozzle to Target Spacing Ratio (β) and 
Water as the Cooling Fluid (Re=750, dn=1.2mm, b=0.60 
mm, q=250 kW/m2) 
 

 
 
 

72 

Figure 4.7   Local Nusselt Number Distribution for Silicon Curved Plate 

for Different Nozzle to Target Spacing Ratio (β) and Water 
as the Cooling Fluid  (Re=750, dn=1.2mm, b=0.60mm,  
q=250kW/m2) 
 

 
 
 

73 

Figure 4.8   Dimensionless Interface Temperature for Silicon Curved 
Plate for Different Inner Plate Radius of Curvature to Nozzle 

Diameter Ratio (Ri/dn) for Water as the Cooling Fluid (β=2.5, 
Hn = 0.30 cm Re=750, dn=1.2mm, b=0.60 mm, q=250 
kW/m2) 
 

 
 
 
 

74 

Figure 4.9   Local Nusselt Number Distribution for Silicon Curved Plate 
for Different Inner Plate Radius of Curvature to Nozzle 

Diameter Ratio (Ri/dn) for Water as the Cooling Fluid (β =2.5 
, Hn = 0.30 cm Re=750, dn=1.2mm, b=0.60 mm, q=250 
kW/m2) 
 

 
 
 
 

 75 

Figure 4.10   Average Nusselt Number and Maximum Temperature in the 

Solid Variations (Θmax) for Silicon Curved plate for Different 
Inner Plate Radius of Curvature to Nozzle Diameter Ratio 

(Ri/dn) for Water as the Cooling Fluid (β =2.5 , Hn = 0.30 cm 
Re=750, dn=1.2mm, b=0.60 mm, q=250 kW/m

2) 
 

 
 
 
 

76 

Figure 4.11   Heat Transfer Coefficient and Nusselt Number Distributions 

for Different Nozzle Slot Widths (Q=0.0006 m3/s, β =2.5 , Hn = 

0.30 cm β=2.5, Re=750, q=250 kW/m2 

 
  
77 
 

Figure 4.12   Dimensionless Interface Temperature for Different Plate 

Thicknesses (β =2.5,  Re=750, dn=1.2mm, q=250 kW/m
2) 

 

 
 78 

Figure 4.13   Local Nusselt Number Distribution for Different Plate 

Thicknesses (β =2.5, Re=750, Hn = 0.30 cm, q=250 kW/m
2) 

 

 
 79 

Figure 4.14   Average Nusselt Number and Maximum Temperature in the 

Solid Variations with Plate Thickness  (β =2.5, Re=750) 
 

 
80 

Figure 4.15   Dimensionless Interface Temperature for Different Cooling 

Fluids (β=2.5,  Re=750)   
 

 
81 

   



www.manaraa.com

 ix 

Figure 4.16  
 

Heat Transfer Coefficient and Nusselt Number Distributions 

for Different Cooling Fluids (Re=750, β=2.5) 
 

  
 82 

Figure 4.17 
 
   

Local Nusselt Number Compared with Bartoli and Faggiani 

[21] at Different Reynolds Numbers (φ=90°, dn=2.0 mm, 
b=0.50 mm, q=50 kW/m2)  
 

 
 

 83 

Figure 4.18   Average Nusselt Number Compared with Gori and Bossi [29] 
and Whitaker [40] for Different Reynolds Numbers (dn=2.5 
mm, b = 0.2 mm, q=2.35 kW/m2) 
 

 
 

84 

Figure 4.19   Dimensionless Local Heat flux Variation at the Solid-Fluid 
Interface for Silicon Plate at Different Time Instants (Re=750, 
b/dn=0.5, ß=2.5)  
 

 
 

86 

Figure 4.20   Dimensionless Interface Temperature Variation for Silicon 
Plate at Different Time Instants (Re=750, b/dn=0.5, ß=2.5) 
 

 
 88 

Figure 4.21   Local Nusselt Number Distribution for Silicon Plate at 
Different Time Instants (Re=750, b/dn=0.5, ß=2.5) 
 

 
89 

Figure 4.22    Distribution of Dimensionless Maximum Temperature at the 
Solid-Fluid Interface, within the Solid, and Maximum-to-
Minimum Temperature Difference with Time for Two 
Reynolds Numbers (Silicon Plate, b/dn=0.5, ß=2.5) 
 

 
 
 

90 

Figure 4.23   Variation of Average Nusselt Number with Time For Silicon 
Plate at Two Different Reynolds Numbers (b/dn=0.5, ß=2.5) 

 
 91 

 
Figure 4.24   Time Required to Reach Steady-State for Silicon Plate at 

Different Reynolds Numbers (b/dn=0.5, ß=2.5) 
 

 
 92 

 
Figure 4.25    Distribution of Dimensionless Maximum Temperature at the 

Solid-Fluid Interface, within the Solid, and Maximum-to-
Minimum Temperature Difference with Time for Different 
Plate Thicknesses (Silicon Plate Re=750, ß=2.5) 
 

 
 

 
 93 

Figure 4.26   Variation of Average Nusselt Number with Time for 
Constantan Plate at Three Different Thicknesses (Re=750, 
ß=2.5) 
 

 
 
 94 

 
 
 
 
 

 
 
 
 

 
 
 
 



www.manaraa.com

 x 

Figure 4.27   Distribution of Dimensionless Maximum Temperature at the 
Solid-Fluid interface, within the Solid, and Maximum-to-
Minimum Temperature Difference with Time for Different 
Materials (Silicon Plate, Re=750, ß=2.5) 
 

 
 
 

95  
 

Figure 4.28   Variation of Average Nusselt Number with Time for Different 
Materials (Re=750, b/dn,=0.5, ß=2.5) 
 

 
 96 

Figure 4.29    Time Needed to Reach Steady-State for Different Cylindrical 
Plate Thicknesses and for Different Materials (Re=750, 
ß=2.5) 
 
 
 

 
 
 97 

   
   
 
 
 



www.manaraa.com

 xi 

 
 
 
 
 

List of Symbols 
 
b Plate thickness, ro- ri, Ro- Ri,     [m] 

dn Diameter of the nozzle [m] 

Fo Fourier number, αf t/ dn
2 

g  Acceleration due to gravity [m/s2] 

h Heat transfer coefficient [W/m2K], qint/(Tint-Tj) 

hav Average heat transfer coefficient [W/m2K], defined by Eqn.(14) 

Hn Distance of the nozzle from the point of impingement [m] 

k Thermal conductivity [W/m K] 

Nu Nusselt number, (h⋅dn)/kf 

Nuav Average Nusselt number for the entire surface, (hav⋅dn)/kf   

Numax Maximum Nusselt number for the entire surface, (hmax⋅dn)/kf 

n Coordinate normal to the surface 

p Pressure [Pa] 

Pr Prandtl number, νf/αf 

q Heat flux [W/m2] 

Q Fluid flow rate [m3/s] 

r Radial coordinate [m] 

ri Inner radius of hemisphere [m] 

ro Outer radius of hemisphere [m]  



www.manaraa.com

 xii 

R Radius of curvature [m] 

Re Reynolds number, (VJ⋅dn)/νf  

Ri Inner radius of curvature of the plate [m] 

Ro Outer radius of curvature of the plate [m]   

s Coordinate along the arc length, Ro Φ, ro Φ     [m] 

T Temperature [K] 

To Constant Temperature at the inner surface of hemisphere (isothermal 

case) [K] 

t Time [s] 

VJ Jet velocity [m/s] 

Vr, z Velocity component in the r, z-direction [m/s] 

Vx, y Velocity component in the x, y-direction [m/s] 

x coordinate along x-axis [m] 

y coordinate along y-axis [m] 

z Axial coordinate [m] 

Greek Symbols: 

α Thermal diffusivity [m2 /s] 

β Dimensionless nozzle to target spacing, Hn/dn 

δ Liquid film thickness [m] 

ν Kinematic viscosity [m2/s] 

θ Angular coordinate [rad] 

Θ Dimensionless temperature (constant heat flux boundary condition),  2⋅kf 

⋅(Tint -TJ)/ (q⋅dn) 



www.manaraa.com

 xiii 

Φ Angular coordinate for curved plate [rad] 

Φ Azimuthal coordinate for hemisphere [rad] 

ρ Density [kg/m3] 

σ Surface tension [N/m] 

Ω Dimensionless temperature (isothermal boundary condition), (Tint-TJ)/ (To-

TJ) 

Subscripts: 

atm Ambient 

av Average  

f Fluid 

i Initial Condition 

int Solid-fluid Interface 

j Jet or inlet 

max Maximum  

n Nozzle 

s solid 

SS Steady State 

w Inner surface of hemisphere 

 

 
 
 
 
 
 
 



www.manaraa.com

 xiv 

 
 
 
 
 
Numerical Analysis of Heat Transfer During Jet Impingement on Curved 

Surfaces 
 

Cesar F. Hernandez-Ontiveros 
 

ABSTRACT 
 

The flow structure and convective heat transfer behavior of a free liquid jet 

ejecting from a round nozzle impinging vertically on a hemispherical solid plate 

and a slot nozzle impinging vertically on a cylindrical curved plate have been 

studied using a numerical analysis approach. The simulation model incorporated 

the entire fluid region and the solid hemisphere or curved plate. 

Solution was done for both isothermal and constant heat flux boundary 

conditions at the inner surface of the hemispherical plate and the constant heat 

flux boundary condition at the inner surface of the cylindrical shaped plate. 

Computations for the round nozzle impinging jet on the hemispherical plate  and 

cylindrical plate were done for jet Reynolds number (ReJ) ranging from 500 to 

2000, dimensionless nozzle to target spacing ratio (β) from 0.75 to 3, and for 

various dimensionless plate thicknesses to diameter nozzle ratio  (b/dn) from 

0.083-1.5. Also, computations for the slot nozzle impinging jet on the cylindrical 

plate were done for inner plate radius of curvature to nozzle diameter ratio (Ri/dn) 

of 4.16-16.66, plate thickness to nozzle diameter ratio (b/dn) of 0.08-1.0, and 

different nozzle diameters (dn), Results are presented for dimensionless solid-

fluid interface temperature, dimensionless maximum temperature in the solid, 
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local and average Nusselt numbers using the following fluids: water (H2O), 

flouroinert (FC-77), and oil (MIL-7808) and the following solid materials: 

aluminum, copper, Constantan, silver, and silicon. 

 Materials with higher thermal conductivity maintained a more uniform 

temperature distribution at the solid-fluid interface. A higher Reynolds number 

increased the Nusselt number over the entire solid-fluid interface. Local and 

average Nusselt number and heat transfer coefficient distributions showed a 

strong dependence on the impingement velocity or Reynolds number.  As the 

velocity increases, the local Nusselt number increases over the entire solid-fluid 

interface.  Decreasing the nozzle to target spacing favors the increasing of the 

Nusselt number.  Increasing the nozzle diameter decreases the temperature at 

the curved plate outer surface and increases the local Nusselt number.  Similarly, 

local and average Nusselt number was enhanced by decreasing plate thickness. 

Numerical simulation results are validated by comparing with experimental 

measurements and related correlations. 
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 1 

 
 
 
 
 

Chapter 1 Introduction 
 

The implementation of jet impingement due to its high convective heat 

transfer rate in mechanical and chemical processes has led to many industry 

applications.  These include cooling and heating of metal plates, cleaning of iced 

aircraft wings, cooling of turbine blades, drying of wetted surfaces, cleaning of 

industrial equipment, and cooling of electrical equipment.  The advantage of 

using jets translates into reduced operational cost by improving the cooling 

efficiency of the system or equipment and reduces early failure of it.  Thus, the 

need for heating/cooling processes able to transfer or remove very high heat 

fluxes appeals to liquid jet impingement as a choice.   Enhancement of such 

heating/cooling processes will require information on the effects of jet velocity, 

thermo-physical properties of fluid and solid, thickness of the solid, and height 

from nozzle to impingement surface. Free-surface jets are created when a liquid 

discharges into ambient air or other type of gaseous environment [1].  The free 

surface, then, begins to form instantly at the nozzle exit and remains throughout 

the impingement section and wall region as the fluid moves downstream along 

the plate after impingement.  The structure of the free surface depends on 

surface tension, gravitational and pressure forces. 
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1.1 Literature Review 

1.1.1 Round Jet Impingement 

An early investigation involving liquid jet impingement using round nozzles 

was carried out by Stevens and Webb [2] who considered an axisymmetric, 

single-phase liquid jet impinging on a flat uniformly heated surface.  This 

experimental study investigated the effects of Reynolds number, nozzle to plate 

spacing, and jet diameter.  Garimella and Rice [3] experimentally measured the 

local heat transfer from a small heat source to a normally impinging, 

axisymmetric and submerged liquid (FC-77) jet from a round nozzle for a range 

of Reynolds number of 4,000-23,000 and nozzle to heat source spacing ratios of 

1 to 14.  They concluded that secondary peaks in the local heat transfer 

coefficient resulted form increasing nozzle diameters for a given Reynolds 

number.  Gomi and Webb [4] performed an investigation on heat transfer from a 

vertical heated surface to an obliquely impinging circular free-surface jet of 

transformer oil for various Reynolds number (235-1,746) with jet angles from 45° 

to 90°.  They concluded that the maximum heat transfer coefficient was found to 

decrease with increasing jet inclination. Lee et al. [5] studied heat transfer from a 

convex surface with low curvature using liquid crystals to measure the local 

surface temperature at Reynolds numbers ranging from 11,000-50,000. The 

experimental study concluded that the stagnation point Nusselt number 

increases with increasing surface curvature.    Kornblum and Goldstein [6] 

analyzed the flow of circular jets impinging on semicylindrical surfaces (convex 

and concave) for relatively small jet to semicylindrical diameter ratios ranging 
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from 0.0197-0.0394 using a flow visualization technique. Lee et al. [7] employed 

an apparatus consisting of various components (heat exchanger, flow meter, and 

air blower) to target a convex hemispherical surface for Re=11,000-87,000 at 

different dimensionless nozzle-to-surface distance and at constant hemisphere-

to-nozzle diameter ratio  to obtain information on the stagnation and local Nusselt 

numbers.  Tong [8] numerically studied convective heat transfer of a circular 

liquid jet impinging onto a substrate to understand the hydrodynamics and heat 

transfer of the impingement process using the volume-of-fluid method to track the 

free surface of the jet. 

Cornaro et al. [9] visualized fluid flow using a smoke-wire technique on 

concave and convex surfaces to examine the effects of curvature, nozzle to 

surface distance, and Reynolds number. The convex surface was examined for 

jet diameters of 0.0472, 0.0726, and 0.0986 m with Reynolds numbers ranging 

from 6,000-15,000.  In addition, Cornaro et al. [10] showed the effect of 

increasing Reynolds number on the local Nusselt number for different types of 

curvature.  Fleischer et al. [11] used a smoke-wire flow visualization technique to 

investigate the behavior of a round jet impinging on a convex surface.  They 

showed the initiation and development of ring vortices and their interaction with 

the cylindrical surface.  The effects of Reynolds number, jet to surface distance, 

and relative curvature were studied.  Baonga et al. [12] experimentally studied 

the hydrodynamic and thermal characteristics of a free round liquid jet impinging 

into a heated disk for nozzle to plate spacing of 3-12 times nozzle diameter and 

for Reynolds number of 600-9,000. 
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1.1.2 Slot Jet Impingement 

A number of past studies have considered liquid jet impingement from a 

two-dimensional slot nozzle to a heated flat plate.  One of the early investigations 

on jet impingement on a flat plate was conducted by Inada et al. [13] who studied 

laminar flow between a plane surface and a two-dimensional water jet with 

constant heat flux using the Runge-Kutta method to obtain solutions for the 

boundary layer momentum and energy equations.  Similar analytical solution to 

the momentum equation using the first order Cauchy-Euler ordinary differential 

equation and the integral equation approach to solve for the energy equation was 

employed by Carper [14].  He attempted to obtain a solution for the ratio of 

thermal to hydrodynamic boundary layer thickness for a certain range of 

combinations of jet Prandtl number and jet Reynolds number for an axisymmetric 

liquid jet impinging on a flat surface.  Also, Liu and Lienhard [15] analytically and 

experimentally investigated convective heat transfer to an impinging liquid jet 

from a heated flat surface kept at a uniform heat flux.  Solutions to the thermal 

boundary layer and film thickness were approximated using the integral method 

to obtain information about the local Nusselt number and temperature 

distribution.  They concluded that the average Nusselt number for a constant 

heat flux is larger than for a constant wall temperature.  Also, the average 

Nusselt number for a plane jet is generally larger than that for an axisymmetric 

jet.  Wadsworth and Mudawar [16] performed an experiment to investigate single 

phase heat transfer from a smooth simulated chip to a two-dimensional jet of 

dielectric liquid FC-72 delivered from a very thin rectangular slot jet into a 
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channel confined between the chip surface and nozzle plate.  The experiment 

studied the effects of jet width, confinement channel height, and impingement 

velocity for Reynolds number ranging from 1,000-100,000.  Gau and Chung [17] 

reported heat transfer for air jet impingement on semicylindrical curved surfaces 

at low and high Reynolds numbers (6,000-35,000) by varying slot widths to 

surface diameter ratios (0.022-0.125) using smoke particles as  means to 

visualize the air flow. The authors observed rotating vortices at the stagnation 

line on the convex surface which increased the heat transfer characteristics of 

the flow. Stevens and Webb [18] experimentally characterized the flow structure 

under an impinging liquid jet hitting a flat surface.  However, their research only 

focused in measuring the velocity of the free surface of the jet.  To achieve it, 

they used a novel laser-Doppler velocimetry technique to capture the fluctuations 

of the free surface for Reynolds numbers ranging from 16,000 to 47,000.  

Teuscher et al. [19] studied jet impingement cooling of an in-line array of 

discrete heat sources (fins of different configurations) by a submerged slot jet of 

FC-77.  Experimental results of convective heat transfer were obtained for 

various slot widths (0.254-0.508 mm) and Reynolds number of 10-500.  Ma et al. 

[20] measured heat transfer coefficients resulting from the impingement of 

transformer oil jet issuing from various slot widths for fluid Prandtl numbers of 

200-270 and Reynolds number between 55 and 415.  Bartoli and Faggiani [21] 

experimentally studied heat transfer form a circular cylinder to a slot jet of water 

at different Prandtl numbers for 3500≤Re≤20000 for tests performed at different 

angles 0°≤ θ≤ 180° in order to obtain the local and average Nusselt number.  Slot 
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jet impingement involving heat transfer from circular cylinders using air as the 

cooling fluid was experimentally studied by McDaniel  and Webb [22] for 

Reynolds numbers in the range 600-8000 varying cylinder diameter to jet width 

spacings of 0.66, 1 and 2, and for jet exit to nozzle width spacing from 1 to 11.  

Gori and Bossi [23] investigated heat transfer for the flow over the surface of a 

cylinder for Reynolds number (4000-20,000) and determined that the distance 

between the exit of the slot jet and the cylinder surface affects the local Nusselt 

number.  Kayansayan and Küçüka [24] performed an experimental and 

numerical study of jet impingement cooling on a concave channel.  The results of 

the experimental investigation concluded that for a range of Reynolds numbers 

from 200 to 11,000 and slot to surface spacing from 2.2 to 4.2 of the slot width 

the heat transfer rates at the surface of the concave channel are improved due to 

the curvature of the channel.   

Rahman et al. [1] numerically studied the conjugate heat transfer during 

impingement of a confined liquid jet.  By varying slot width, impingement height, 

and plate thickness for Reynolds number ranging from 445-1,545.  Shi et al. [25] 

carried out a numerical study to examine the effects of Prandtl number (0.7-71), 

nozzle to target spacing (2-10) and Reynolds number ranging from 0.01-100 on 

heat transfer under a semi-confined laminar slot jet.  Olsson et al. [26] simulated 

heat transfer from a slot air jet impinging on a cylinder at various Reynolds 

numbers ranging from 23,000-100,000 and varying jet to cylinder distances and 

cylinder curvatures. They stated that the flow characteristics and the heat 
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transfer distribution around cylinders are found to be dependent on the distance 

and the opening between the jets.  

Chan et al. [27] employed a liquid crystal thermographic system to 

experimentally determine the effects of jet Reynolds number, dimensionless slot 

nozzle width to impingement surface distance ratio, and slot nozzle width to 

circumferential distance on the local heat transfer for an air impinging slot jet on a 

semi-circular convex surface. Chan et al. [28] measured the mean flow and 

turbulence of a turbulent air slot jet impinging on two different semi-circular 

convex surfaces at Reynolds number 12,000 using a hot-wire X-probe 

anemometer.  Gori and Bossi [29] experimentally determined the optimal height 

in the jet cooling of an electrically heated circular cylinder for various Reynolds 

numbers measuring mean and local Nusselt numbers.  Rahimi et al. [30] 

investigated an under-expanded jet impinging on a heated cylindrical surface 

varying the nozzle to surface spacing (3-10) for various Reynolds numbers.  

Yang and Hwang [31] carried out a numerical simulation of flow of a turbulent slot 

jet impinging on a semicylindrical convex surface for Reynolds number (6,000-

20,000) of the inlet flow and by varying slot jet width to jet to surface distance 

ratio.  

 Chen et al. [32] performed a theoretical analysis to characterize heat 

transfer from horizontal surfaces to single phase free surface laminar slot jets 

using a heat flux condition for different working fluids and different nozzle sizes. 

Zuckerman and Lior [33] employed numerical models to understand the heat 

transfer behavior on circular cylinders cooled by radial slot jets. These models 
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attempted to simulate a cylinder exposed to a radial array of slot jets (2-8) for 

Reynolds number ranged from 5,000 to 80,000 and different target diameter to 

nozzle hydraulic diameter. They concluded that the highest average Nusselt 

number would occur when having a lower number of jets.   

 

1.2 Overview of Literature 

The literature mentioned above describes most studies to date on jet 

impingement over a curved or flat surface using air or liquid as the working fluid 

and most of them have considered the steady state condition only.  A few 

attempted to obtain local heat transfer distribution of concave, convex, or flat 

surfaces  taking into account the transient nature of the problem.   Therefore, a 

through study of liquid jet impingement on a curved surface is needed as this is 

encountered in many industrial processes. 

 

1.3 Thesis Aim 

The present study attempts to carry out a comprehensive numerical 

investigation of steady and transient local conjugate heat transfer for laminar free 

surface jet impingement over a hollow hemisphere and a curved cylindrical 

shaped plate. Computations using water (H2O), flouroinert (FC-77), oil (MIL-

7808), and ammonia (NH3) as working fluids were carried out for different flow 

configurations, plate configurations, and different plate materials. The 

computations were carried out using the finite element method using FIDAP 

version 8.6. software package focused in computational fluid dynamics (CFD) of 
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the FLUENT corporation.  The finite element method (FEM) is used for finding 

approximate solution of complex partial differential equations (PDE) as well as of 

integral equations. The solution method uses a mesh domain (elements grid) to 

solve the differential equation completely by applying to each element a system 

of simultaneous equations. The system of equations is solved for unknown 

values using the techniques of linear algebra or non-linear numerical schemes, 

as appropriate, or rendering the PDE into an equivalent ordinary differential 

equation, which is then, solved using finite difference.  This approach differs from 

the finite element method (FEM) such that it uses finite differences schemes 

(forward, backward, and central) to approximate derivatives, being the central 

difference the one that provides the more accurate approximation.  Also, the 

finite difference method is an approximation to the differential equation whereas 

the finite element method is an approximation to its solution.  One of the most 

attractive features of the FEM over the FDM is its ability to handle complex 

geometries and boundaries (moving boundaries) with relative ease. That is the 

reason why the FEM was chosen as the preferred method to solve for the 

mathematical model presented in this study.  
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Chapter 2 Mathematical Models and Computation 

 
2.1 Hemispherical Model 

The physical hemispherical model studied here is three-dimensional (3-D) 

by nature as depicted in Figure 2.1. However, the problem can be greatly 

simplified into an axisymmetric liquid jet model that impinges on the outer surface 

of a hollow hemisphere subjected to an isothermal or constant heat flux boundary 

condition at its inner surface.  Thus, the free jet discharges from the round nozzle 

and impinges perpendicularly at the top center of the hemisphere while the 

hemisphere is dissipating heat from within.  Figure 2.2 shows a 2-D cross-

sectional view of the system including the origin and axes used to write the 

boundary conditions.  The fluid is Newtonian and the flow is incompressible and 

axisymmetric.   
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Figure 2.1 Three Dimensional Schematic of a Hollow Hemisphere During an 

Axisymmetric Liquid Jet Impingement  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Cross-Sectional View of a Hollow Hemisphere During an Axisymetric Jet  

Impingement 
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2.1.1 Governing Equations: Steady State Heating 
 

The equations describing the conservation of mass, momentum (r and z 

directions respectively), and energy can be written as [34]: 

0V =⋅∇
r

         (2.1.1) 
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The conservation of energy inside the solid can be characterized by the following 

equation: 

0Ts
2 =∇          (2.1.5) 

 
2.1.2 Boundary Conditions: Steady State Heating 

The following boundary conditions were used: 
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At inner surface of hemisphere: 
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The boundary condition at the free surface 
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kinematic condition and balance of normal and shear stresses.  The kinematic 

condition related velocity components to local slope of the free surface.  The 

normal stress balance took into account the effects of surface tension.  In the 

absence of any significant resistance from the ambient gas, the shear stress 

encountered at the free surface is essentially zero.  Similarly, a negligible heat 

transfer at the free surface results in zero temperature gradient.                       

The local and average heat transfer coefficients can be defined as:  
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where intT  is the average temperature at the solid-liquid interface. The local and 

average Nusselt numbers are calculated according to the following expressions. 
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f
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2.1.3 Governing Equations: Transient Heating 

A liquid jet axially discharging from a round nozzle impinges on the outer 

surface of a hollow hemisphere subjected to a constant heat flux boundary 

condition at its inner surface.  At t=0 the power source is turned on and heat 

begins to flow only after an initially isothermal fluid flow has been established on 

the hemisphere. The fluid is Newtonian and the flow is incompressible and 

axisymmetric. Therefore, the equations describing the conservation of mass, 

momentum (r and z directions respectively), and energy [34]: 
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The conservation of energy inside the solid can be characterized by the following 

heat conduction equation: 
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2.1.4 Boundary Conditions: Transient Heating 

The following boundary conditions were used: 
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The plate was assumed to be at thermal equilibrium with jet fluid before the 

transient heating of the plate was turned on.  The velocity field at this condition 

was determined by solving only the continuity and momentum equations in the 

fluid region.  Thus,  

At t = 0: 

Tf = Ts =  Tj , Vi = Vr, z                (2.1.29)  
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2.2 Cylindrical Plate Model 

The physical model corresponds to a two-dimensional symmetric liquid jet 

that impinges on the outer surface of a curved hollow cylindrical shaped plate 

subjected to a uniform heat flux boundary condition at the inner surface as shown 

in Figure 2.3.  The fluid is Newtonian and the flow is incompressible and 

symmetric about the mid-plane.  Figure 2.3 also shows the origin and axes used 

to write the boundary conditions. 

            

                 

 
 

          

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.3 Schematic View of a Curved Plate During a 2-D Symmetric Liquid Jet 

Impingement 
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2.2.1 Governing Equations: Steady State Heating 
 

The equations describing the conservation of mass, momentum (x and y 

directions respectively), and energy using a 2-D coordinate system can be 

written as [34]: 
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The conservation of energy inside the solid can be characterized by the following 

equation: 

0Ts
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2.2.2 Boundary Conditions: Steady State Heating 
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The boundary condition at the free surface included the kinematic condition and 

balance of normal and shear stresses.  The kinematic condition related velocity 

components to local slope of the free surface.  The normal stress balance took 

into account the effects of surface tension.  In the absence of any significant 

resistance from the ambient gas, the shear stress encountered at the free 

surface is essentially zero.  Similarly, a negligible heat transfer at the free surface 

results in zero temperature gradient. 
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where intT  is the average temperature at the solid-liquid interface. The local and 

average Nusselt numbers are calculated according to the following expressions 
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2.2.3 Governing Equations: Transient Heating 

The physical model corresponds to a two-dimensional symmetric liquid jet 

that impinges on the outer surface of a curved hollow cylindrical shaped plate 

subjected to a uniform heat flux boundary condition at the inner surface.  At t=0 

the power source is turned on and heat begins to flow only after an initially 

isothermal fluid flow has been established on the plate. The fluid is Newtonian 

and the flow is incompressible and symmetric about the mid-plane. The 

equations describing the conservation of mass, momentum, and energy in the 

fluid region can be written as [34]: 
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The conservation of energy inside the solid can be characterized by the following 

equation: 

t

Ts
s ∂

∂
=∇ s

2Tα                   (2.2.21) 

 

2.2.4 Boundary Conditions: Transient Heating 

The following boundary conditions were used:                         
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The plate was assumed to be at thermal equilibrium with jet fluid before the 

transient heating of the plate was turned on.  The velocity field at this condition 

was determined by solving only the continuity and momentum equations in the 

fluid region.  Thus,  

At t = 0: 

Tf = Ts =  Tj , Vi = Vx, y               (2.2.29) 
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2.3 Numerical Computation 

2.3.1 Steady State Process 

The governing equations in conjunction with the boundary conditions 

described above were solved using the Galerkin finite element method employed 

by FIDAP.  Four node quadrilateral elements were used as shown in Figure 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.4 Mesh Plot of a Curved Plate During a 2-D Symmetric Liquid Jet Impingement 

 

For every element, the velocity, pressure, and temperature fields were 

approximated until convergence was achieved. The method to solve the set of 

the resulting nonlinear equations was the Newton-Raphson algorithm due to its 
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coupled nature for two dimensional problems and its ability to solve all 

conservation equations in a simultaneous manner. The approach used to solve 

the free surface problem described here was to introduce a new degree of 

freedom representing the position of the free surface. This degree of freedom 

was introduced as a new unknown into the global system of equations. A scaled 

dense grid distribution was used to adequately capture large variations near the 

solid-fluid interface of the meshed domain. Due to non-linear nature of the 

governing transport equations, an iterative procedure was used to converge at 

the solution for the velocity and temperature fields. Since the solution of the 

momentum equation required only two out of the three boundary conditions at 

the free surface, the third condition was used to upgrade the position of the free 

surface at the end of each iteration step. The height of the free surface was 

adjusted after each iteration by satisfying the kinematic condition that relates the 

slope of the free surface to local velocity components at the free surface. The 

Newton-Raphson solver employed spines to track the free surface and re-

arranged grid distribution with the movement along the free surface. The spines 

are straight lines passing through the free surface nodes and connect the 

remaining nodes underneath the free surface. The movement of the free surface 

affected only the nodes along the spine. The solution was considered converged 

when relative change in field values from a particular iteration to the next, and the 

sums of the residuals for each variable became less than 10-6.   
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2.3.2 Transient Process 

In order to determine the initial velocity field (Vi), the equations for the 

conservation of mass and momentum were solved.  Once the initial free surface 

height distribution and the flowfield for the isothermal equilibrium condition were 

satisfied, the power of the heat source was turned on and heat began to flow.  

The computation domain included both solid and fluid regions, and continuity, 

momentum, and energy were solved simultaneously as a conjugate problem.  

The height of the free surface was adjusted after each iteration by satisfying the 

kinematic condition that relates the slope of the free surface to local velocity 

components at the free surface. The solution was considered converged when 

relative change in field values from a particular iteration to the next, and the sums 

of the residuals for each variable became less than 10-6. The computation 

continued towards the steady state condition; however, because of large 

changes at the outset of the transient and very small changes when the solution 

approached the steady-state condition, a variable time step was used for the 

computation.   
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2.4 Mesh Independence and Time Step Study 

2.4.1 Cylindrical Coordinates 

Several grids or combinations of number of elements were used to 

determine the accuracy of the numerical solution as shown in Figure 2.5. The 

numerical solution becomes grid independent when the number of divisions 

equal to 40x119 in the axial (z) (radial in thin film after impingement) and arc (Φ) 

directions respectively is used. Numerical results for a 40x119 grid gave almost 

identical results compared to those using 34x79 and 40x87 grids. A quantitative 

difference in grid independence was calculated using the following expression: 

eN

D
CintT +=         (2.3.1) 

C, D, and e are constants to be evaluated. N represents the number of divisions 

along a chosen axis. Tint is the solid-fluid interface temperature at a given Φ-

location of the hemispherical plate.  Thus, equation (2.3.1) has three unknowns 

at three sets of interface temperatures taken at three different grid sizes.  This 

results in a set of non-linear equations with three variables.  The value of e was 

obtained based on doing a particular number of iterations.  At s or Φ=0.001276 

m, the value of e was calculated to be 8.554.  Once the value of e had been 

obtained, it was substituted into the system of equations and the values of C and 

D were calculated to be 318.9112 and 0.72205E19 respectively. In addition, the 

percentage error is calculated used the following expression:  

x100
C

CintT −
        (2.3.2) 
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The error at Φ=0.001276 m was found to be 3.987% for 40x119 grids and 4.26% 

for 48x87 grids. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.5 Local Dimensionless Interface Temperature for Different Number of Elements 

in z (or r) and Φ Directions for Water as Fluid and Silicon as Solid (Re=750, 
b/dn=0.5, ß=2.0, q=250 kW/m2) 

 

Figure 2.6 plots the transient variation of the maximum dimensionless 

temperature encountered at the hemisphere’s outer surface (solid-fluid interface) 

for different time increments as a function of time using the Fourier number (Fo) 

as a dimensionless number to represent time.  Observe that the simulation is not 

very susceptible to the time increments chosen.  However, a very small time 

increment (0.00001 s) ensures the initial condition to be revealed.  For this 

numerical study, an appropriate time increment of 0.01 s was selected in order to 

accomplish a smooth variation.  Notice how the maximum dimensionless 

320

325

330

335

340

345

350

355

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Dimensionless  Distance, s/dn

S
o
li
d
-F

lu
id

 I
n
te

r
fa

c
e
 T

e
m

p
e
r
a
tu

r
e
, 
K

nzxnΦ = 22x57

nzxnΦ = 26x57

nzxnΦ = 30x79

nzxnΦ = 34x79

nzxnΦ = 40x119

nzxnΦ = 40x87



www.manaraa.com

 26 

temperature increases rapidly as the time increases all the way to the steady-

state condition. 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 2.6 Solid-Fluid Interface Dimensionless Maximum Temperature Variation for 

Silicon  Hemisphere at Different Time Increments (Re=750, b/dn=0.5, ß=2.0, 
Hn = 0.30 cm, q=250 kW/m2) 
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Several grids or combinations of number of elements were used to 

determine the accuracy of the numerical solution as shown in Figure 2.7. The 
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used. Numerical results for a 30x132 grid gave almost identical results compared 

to those using 32x132 and 26x92 grids. The average difference was 0.0466%. 

Also, a quantitative difference in grid independence was carried on using 

equation (2.3.1). At s or φ=0.001277 m, the value of e was calculated to be 

8.554.  Once the value of e had been obtained, it was substituted into the system 

of equations and the values of C and D were calculated to be 338.2391 and -

0.7070E19 respectively. The error percentage is calculated from equation (2.3.2) 

and found to be 1.51% for 32x132 grids and 1.63% for 26x92 grids at 

φ=0.001277 m. 

         

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Local Dimensionless Interface Temperature for Different Number of Elements 
in x or φ, and y Directions (Re=750, ß=2.5, Hn = 0.30 cm) 
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Figure 2.8 shows the transient variation of the maximum dimensionless 

temperature found at the plate’s outer surface (solid-fluid interface) for different 

time increments as a function of time using the Fourier number (Fo) as a 

dimensionless number to represent time.  Note that the numerical simulation is 

not very susceptible to the time increments chosen.  For this study, a time 

increment of 0.01 s was chosen in order to obtain a smooth variation for 

temperature.  Notice how the maximum dimensionless temperature at the 

transient increases rapidly all the way to the steady-state condition. 
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Figure 2.8 Solid-Fluid Interface Dimensionless Maximum Temperature Variation for 
Silicon Plate at Different Time Increments (Re=750, b/dn=0.5, ß=2.5, Hn = 
0.30 cm, q=250 kW/m2) 
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Chapter 3 Hemispherical Model Results 
 

3.1 Steady State Heating 

 A typical velocity vector distribution is shown in Figure 3.1. It can be 

observed that the velocity remains almost uniform at the potential core region of 

the jet.  However, the velocity decreases and the fluid jet diameter increases as 

the fluid gets closer to the surface during the impingement process. The direction 

of motion of the fluid particles shifts along the angle of curvature, afterwards, the 

fluid accelerates creating a region of minimum sheet thickness. That is the 

beginning of the boundary layer zone. It can be noticed that as the fluid moves 

downstream along the convex surface, the boundary layer thickness increases 

and the frictional resistance from the wall is eventually transmitted to the entire 

film thickness where the fully viscous zone develops. 
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Figure 3.1 Velocity Vector Distribution for Silicon Hemisphere with Water as the Cooling 

Fluid (Re = 750, b = 0.60 mm, Q = 5.665x10-7 m3/s,  β = 2.0, Hn = 0.30  cm, q 
= 250 kW/m2) 

 
 

A pressure distribution plot is shown in Figure 3.2.  As it is seen, the 

pressure at the impingement regions is higher due to the fluid impacting the 

hemisphere outer surface in comparison with the remaining portion of the 

hemisphere.  A pressure gradient distribution is more uniform, however, along 

the arc length of the solid. 
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Figure 3.2 Pressure Distribution for Silicon Hemisphere with Water as the Cooling Fluid 

(Re = 750, b = 0.60 mm, Q = 5.665x10-7 m3/s,  β = 2.0, Hn = 0.30  cm, q = 250 
kW/m2) 

 
 

Figure 3.3 depicts temperature distribution along the solid and fluid region.  

Higher temperatures are encountered along the end of the arc length of the solid-

fluid interface whereas lower temperatures are encountered at the stagnation 

region.  After impact has occurred, the particles start to accelerate towards the 

remaining portion of the hemisphere, hence, increasing the velocity boundary 

layer and temperature boundary layer thickness.    
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Figure 3.3 Temperature Distribution for Silicon Hemisphere with Water as the Cooling 

Fluid (Re = 750, b = 0.60 mm, Q = 5.665x10-7 m3/s,  β = 2.0, Hn = 0.30  cm, q 
= 250 kW/m2) 

 
 
 Figure 3.4 shows the free surface height distribution for different Reynolds 

numbers when the jet strikes the hemisphere’s surface. It can be seen that the 

fluid spreads out moving along the outer surface of the hemisphere. As the 

Reynolds number increases, the film diminishes in thickness due to a larger 

impingement velocity that translates to a higher fluid velocity in the film. For the 

conditions considered in the present investigation, the flow was supercritical and 

a hydraulic jump did not occur within the computation domain. These 

observations concur with the experimental work of Stevens and Webb [35] for 

free jet impingement on a flat surface.  It was observed that the velocity remains 
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almost uniform at the potential core region of the jet.  However, the velocity 

decreases and the fluid jet diameter increases as the fluid get closer to the 

surface during the impingement process. The direction of motion of the fluid 

particles shifted along the angle of curvature, afterwards, the fluid accelerated 

creating a region of minimum sheet thickness. That was the beginning of the 

boundary layer zone. It was noticed that as the fluid moves downstream along 

the convex surface, the boundary layer thickness increases and the frictional 

resistance from the wall is eventually transmitted to the entire film thickness 

where the fully viscous zone developed. The three different regions observed in 

the present investigation agreed with the experiments of Liu et al. [36] for jet 

impingement over a flat surface. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.4 Free Surface Height Distribution for Different Reynolds Numbers and 

Water  as the Cooling Fluid (b=0.60 mm, β=2.0, Hn=0.30 cm, q=250 
kW/m2)  
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 Figures 3.5 and 3.6 show dimensionless interface temperature and local 

Nusselt number distributions as a function of dimensionless distance (s/dn) along 

the solid-fluid interface at different Reynolds numbers under an isothermal 

heating condition. The curves in Figure 3.5 reveal that the dimensionless 

interface temperature decreases with jet velocity or (Reynolds number). The 

dimensionless interface temperature has the lowest value at s/dn = 0.4 and 

increases along the arc length (s) reaching the highest value at the end of it. The 

local Nusselt number depicted in Figure 3.6 increases rapidly over a small 

distance (core region) measured from the stagnation point, reaching a maximum 

around s/dn = 0.5, and then decreases along the radial distance as the boundary 

layer develops further downstream. The location of the maximum Nusselt 

number can be associated with the transition of the flow from the vertical 

impingement to horizontal displacement where the boundary layer starts to 

develop.  Figures 3.5 and 3.6 confirm how an increasing Reynolds number 

contributes to a more effective cooling by the enhancement of convective heat 

transfer coefficient.   
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Figure 3.5   Dimensionless Interface Temperature Distribution for a Silicon Hemisphere at   

Different Reynolds Numbers, and Water as the Cooling Fluid (β=2.0, Hn= 0.30 
cm, b=0.60 mm, To=373 K) 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6  Local Nusselt Number Distribution for a Silicon Hemisphere at Different 

Reynolds Numbers, and Water as the Cooling Fluid (β=2.0, Hn=0.30 cm, 
b=0.60 mm, To=373 K) 
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Figures 3.7 and 3.8 show dimensionless interface temperature and local 

Nusselt number distributions as a function of dimensionless distance (s/dn) along 

the solid-fluid interface at different Reynolds numbers under a constant heat flux 

condition. The curves in Figure 3.7 reveal that the dimensionless interface 

temperature decreases with jet velocity or (Reynolds number). The 

dimensionless interface temperature has the lowest value at the stagnation point 

(underneath the center of the axial opening) and increases along the arc length 

(s) reaching the highest value at the end of it.  

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.7 Dimensionless Interface Temperature Distribution for a Silicon Hemispherical 

Plate at Different Reynolds Numbers, and Water as the Cooling Fluid (β=2.0, 
Hn= 0.30 cm, b=0.60 mm, q=250 kW/m2) 
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The local Nusselt number shows a very similar kind of distribution as the 

case where the bottom surface of the hemispherical plate is kept at an isothermal 

condition.  The values are however different. This also shows that an increasing 

Reynolds number contributes to a more effective cooling by the enhancement of 

convective heat transfer coefficient. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 Local Nusselt Number Distribution for a Silicon plate at Different Reynolds 

Numbers, and Water as the Cooling Fluid (β =2.0 , Hn = 0.30 cm, b=0.60 mm, 
q=250 kW/m2) 
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that effects of boundary condition is more at lower Reynolds number and the 

curves come closer as the Reynolds number increases. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9  Average Nusselt Number and Heat Transfer Coefficient Variation for 

Different Reynolds Numbers for Constant Heat Flux (q=250kW/m2) and 
Isothermal (To = 373 K) Boundary Conditions (β=2.0, Hn = 0.30cm)  

 
 

The solid-fluid dimensionless interface temperature and local Nusselt 

number distributions for six different nozzle-to-target spacing for water as the 

coolant and Reynolds number of 500 are shown in Figures 3.10 and 3.11 

respectively.  
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Figure 3.10 Dimensionless Interface Temperature for Silicon Hemisphere at Different 

Nozzle to Target Spacing Ratio (β) for Water as the Cooling Fluid (Re=500, 
Q=3.776x10-7m3/s, dn=1.2mm, b=0.60 mm, q=250 kW/m2) 

 
 

It may be noticed that the impingement height quite significantly affects 

the dimensionless interface temperature as well as the Nusselt number only at 

the stagnation region and the early part of the boundary layer region.   
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Figure 3.11 Local Nusselt Number for Silicon Hemisphere at Different Nozzle to Target 

Spacing Ratio (β) for Water as the Cooling Fluid (Re=500, Q=3.776x10-7 

m3/s, dn=1.2mm, b=0.60mm, q=250kW/m2) 
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impingement.  Figure 3.12 shows dimensionless interface temperature for a 

constant q.  It can be observed that there is a larger variation of interface 

temperature at a smaller thickness.  As the thickness increases, the temperature 

at the solid-fluid interface becomes more uniform due to higher distribution of 

heat within the solid by conduction. 

 

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Dimensionless Distance, s/dn

L
o
c
a
l 
N

u
ss

e
lt
 N

u
m

b
er

,N
u

β=0.75

β=1.0

β=1.5

β=2.0

β=2.5

β=3.0



www.manaraa.com

 41 

It may be also noticed that the average temperature at the solid-fluid 

interface decreases when the thickness of the solid hemisphere increases. This 

decrease in temperature is due to lower heat load at increased thickness.  In the 

present investigation, the outer radius of the hemisphere was kept constant ( to 

preserve same β ) while the inner radius was varied to get different thicknesses.  

Since the heat flux imposed in the inner surface of the hemisphere was also kept 

constant, a smaller inner radius resulted in smaller heat input rate at that 

boundary.  In addition, the resistance of the material to the path of heat flow 

increases with thickness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12  Dimensionless Interface Temperature for Silicon Hemisphere at Different 

Thickness (b) for Water as the Cooling Fluid (Re=750, Q=5.665x10-7m3/s, 
dn=1.2mm, b=0.60 mm, q=250 kW/m2) 
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Figure 3.13 plots the distribution of local Nusselt number along the surface 

of the hemisphere for different values of wall thickness.  Nusselt number changes 

by only a small amount over the thicknesses considered in the present 

investigation when silicon is used as the solid material.  A larger peak Nusselt 

number is obtained at a smaller thickness. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.13  Local Nusselt Number for Silicon Hemisphere at Different Thickness (b) for  

Water as the Cooling Fluid (Re=750, Q=5.665x10-7 m3/s, dn=1.2mm, 
b=0.60mm, q=250kW/m2) 
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thermal resistance between inner and outer surface of the solid and therefore 

results in larger temperature drop.  Unlike the constant flux case, the variation of 

interface temperature is more for a thicker plate.  It may be also noticed that 

temperature at the stagnation region is very significantly affected by plate 

thickness.  The local Nusselt number (Figure 3.15) along the plate’s interface 

increased up to s/dn=0.9 as the plate became thinner.  After that, Nusselt number 

became almost independent of thickness variation and continued decaying along 

the hemisphere’s outer surface. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14 Dimensionless Interface Temperature for Silicon Hemisphere at Different 

Thickness (b) for Water as the Cooling Fluid (Re=750, Q=5.665x10-7m3/s, 
dn=1.2mm, b=0.60 mm, To=373 K) 
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Figure 3.15  Local Nusselt Number for Silicon Hemisphere at Different Thickness (b) for  

Water as the Cooling Fluid (Re=750, Q=5.665x10-7 m3/s, dn=1.2mm, 
b=0.60mm, To=373 K) 

 

Figure 3.16 compares the solid-fluid interface temperature for the 

isothermal boundary condition for the present working fluid (water) with two other 
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(TJ=273 K)   and MIL-7808 (TJ=371 K). The highest Nusselt (Figure 3.17) number 

is obtained when FC-77 is used as the working fluid (Tj=273.15 K). These results 

were obtained for a constant Reynolds number of 750.   
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Figure 3.16   Dimensionless Interface Temperature for Silicon Hemispherical Plate   for 

Different Cooling Fluids (Re=750, Q=5.665x10-7m3/s, dn=1.2mm, b=0.60 
mm, To=373 K) 

 
 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.17   Local Nusselt Number for Silicon Hemisphere for Different Cooling Fluids 

(Re=750, Q=5.665x10-7 m3/s, dn=1.2mm, b=0.60mm, To=373 K) 

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Dimensionless Distance, s/dn

D
im

e
n
si

o
n
le

ss
 I
n
te

r
fa

ce
 T

e
m

p
e
r
a
tu

r
e
,   
ΩΩ ΩΩ

in
t

H20(Pr=5.49)

FC-77(Pr=31.80)

MIL-7808(Pr=124.44)

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Dimensionless Distance, s/dn

L
o
c
a
l 
N

u
ss

e
lt
 N

u
m

b
e
r
, 
N

u

Nu, H20(Pr=5.49)

Nu,FC-77(Pr=31.80)

Nu,MIL-7808(Pr=124.44)



www.manaraa.com

 46 

Figure 3.18 compares the hemisphere’s solid-fluid interface temperature 

and local Nusselt number results of water with flouroinert (FC-77) and oil (MIL-

7808) for the constant heat flux boundary condition. It may be noticed that water 

presents the lowest interface temperature and highest Nusselt number 

distribution in comparison with FC-77 and MIL-7808. The lowest Nusselt number 

is obtained when FC-77 is used as the working fluid. These results were obtained 

for a constant Reynolds number of 1500. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.18   Local Nusselt Number and Dimensionless Interface Temperature for 

Different Cooling Fluids (Re = 1500, Q=1.133x10-6m3/s, β=2.0, Hn=0.30 cm,  
b=0.60 mm, q=250 kW/m2) 
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materials were silicon, silver, aluminum, copper, and Constantan, having different 

thermo-physical properties. Constantan shows the lowest dimensionless 

temperature at the impingement zone and the highest at the outlet in comparison 

with other solid materials. Copper and silver show a more uniform distribution 

and higher temperature values at the impingement zone due to their higher 

thermal conductivity. The dimensionless temperature and local Nusselt number 

distributions of these two materials are almost identical due to their similar 

thermal conductivity values. The cross-over of curves for all five materials 

occurred due to a constant fluid flow and heat flux rates that provide a thermal 

energy balance. Solid materials with lower thermal conductivity show higher 

maximum local Nusselt number. The choice of material is also crucial in 

determining the magnitudes of these temperatures. A material with larger thermal 

conductivity will facilitate a faster rate of heat transfer, and therefore will result in 

a lower maximum temperature at the solid-fluid interface and within the 

hemispherical plate. The temperature difference at the interface is an indication 

of the level of temperature non-uniformity at the impingement surface. 
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Figure 3.19 Local Nusselt Number and Dimensionless Interface Temperature for 

Different Hemisphere Materials with Water as the Cooling Fluid (Re=1000, 
β=2.0,  b/dn=0.5, q=250 kW/m2) 
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Nusselt number changes only slightly with solid properties and curves are very 

close to each other.  

 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.20 Dimensionless Interface Temperature for Silicon Hemispherical Plate for 

Different Materials (Re=750, Q=5.665x10-7m3/s, dn=1.2mm, b=0.60 mm, 
To=373 K) 
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Figure 3.21  Local Nusselt Number Distribution for Silicon Plate for Different Solid 

Materials (Re=750, Q=5.665x10-7 m3/s, dn=1.2mm, b=0.60mm, To=373 K) 
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correlates with a margin of 12.17%, 5.65%, 3.35%, 6.00%, and 11.85% 

respectively. Considering the errors inherent in any experimental study as well as 

discretization and round-off errors in the simulation, this comparison is quite 

satisfactory.  In addition, the surface curvature may have affected the heat 

transfer characteristics near the impingement region that was not present in 

experimental studies. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 3.22 Stagnation Nusselt Number Compared with Liu et al. [36], Scholtz and  
Trass [37], and Nakoryakov et al. [38] with Actual Numerical Results under 
Different Reynolds Numbers (dn = 1.2mm, b=0.6mm, q=250kW/m2) 
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3.2 Transient Heating 

In order to understand the thermal response of solid materials to the 

flowing of heat when the power source is turned on (t > 0), it is necessary to 

analyze the transient heat transfer process when a local heat flux travels  

throughout the entire solid up to its outer surface and to the cooling fluid.  The 

local heat flux variation along the solid-fluid interface for different time intervals is 

shown in Figure 3.23. Since an initial isothermal condition was assumed at the 

beginning of the process, the interfacial heat flux is zero at t=0 s.  As expected, 

the heat flux at the solid-fluid interfaces increases with time.  A much larger heat 

flux is seen at the stagnation region since the cold fluid at the jet strikes that 

region and keeps the minimum temperature at that location.  This behavior 

occurs due to the constant renewal of cold fluid to dissipate the heat.  The heat 

dissipated is utilized to rise the temperature of the solid as well as the fluid and 

reduces thermal storage within the solid due to convective heat transfer.  Another 

maximum heat flux is encountered around s/dn=0.5, and then it decreases 

downstream.  This is due to the transition of the fluid from the vertical 

impingement to a thin film flow along the curved surface where the boundary 

layer starts to develop.  This peak can be associated with the start of the thermal 

boundary layer in the thin film structure.  Figure 3.23 also presents qav,int ro
2/qwri

2 

which is the ratio of the energy transmitted to the fluid to the energy input at the 

bottom face of the hemisphere.  It may be noticed that a large amount of energy 

is absorbed by the solid at the early part of the transient and more and more 
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energy is dissipated to the fluid as the transient progresses.  The interfacial heat 

flux reaches within 1% of  the steady-state equilibrium  condition at Fo= 0.103. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3.23   Dimensionless Local Heat Flux Variation at the Solid-Fluid Interface for 

Silicon Hemisphere at Different Time Instants (Re=750, b/dn=0.5, ß=2.5) 
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maximum-to-minimum temperature at the interface being the maximum located 

at the outer edge of the hemisphere and the minimum at the stagnation point of 

the hemisphere due to the constant renewal of cold fluid from the nozzle.  Thus, 

such temperature difference increases with time as more heat flows throughout 

the hemispherical solid and transmitted to the fluid.  The range of temperature 

encountered at the solid-fluid interface increases with time and reaches a 

constant value at the steady state.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.24   Dimensionless Interface Temperature Variation for Silicon Hemisphere at 

Different Time Instants (Re=750, b/dn=0.5, ß=2.5) 
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quantities increase with time.  The local Nusselt number shows a higher value at 

early stages of the transient process due to smaller temperature difference 

between the jet and the outer surface of the hemisphere. This essentially means 

that all heat reaching the solid-fluid interface via conduction through the solid is 

more efficiently convected out as the local fluid temperature is low everywhere at 

the interface.  The local Nusselt number decreases with time until it reaches the 

steady-state equilibrium distribution.  Figure 3.25 also provides the integrated 

average Nusselt number for the entire hemispherical surface.  As expected, the 

average Nusselt number is large at the early part of the transient and 

monotonically decreases with time ultimately reaching the value for the steady 

state condition. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.25  Local Nusselt Number Distribution for Silicon Hemisphere at Different Time 

Instants (Re=750, b/dn=0.5, ß=2.5) 
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Figure 3.26 presents results for dimensionless maximum temperature at 

the interface, maximum temperature in the solid, and maximum-to-minimum 

difference temperature at the interface for two different Reynolds numbers.  The 

maximum temperature within the solid was encountered at the outlet plane next 

to the heated surface (z=-ro, r=ri).  As noticed, the temperature begins to rise with 

time as the hemispherical solid begins to store heat starting after the specified 

initial condition (TJ=310 K) showing a rapid response at the earlier part of the 

heating process until its thermal storage capacity reduces up to its limit (steady-

state). It is important to mention that the time necessary to reach steady-state 

depends strongly on the Reynolds number.   

 

 

 

 

 

 

 

 

 

 

 
Figure 3.26  Distribution of Dimensionless Maximum Temperature at the Solid-Fluid 

Interface, within the Solid, and Maximum-to-Minimum Temperature 
Difference with Time for Two Reynolds Numbers (Silicon Hemisphere, 
b/dn=0.5, ß=2.5) 
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Figure 3.26 also confirms that a higher Reynolds number increases 

convective heat transfer and therefore lowers the hemisphere’s temperature.  

The control of maximum temperature is important in many critical thermal 

management applications including electronic packaging. 

Figure 3.27 plots the average Nusselt number variation along the solid-

fluid interface for two different Reynolds numbers over the entire transient start-

up of the heat transfer process.  As expected, the average Nusselt number 

becomes larger as the Reynolds number increases due to higher velocity of the 

fluid particles moving along the hemisphere’s outer surface, hence, increasing 

the rate of heat transfer.   

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.27  Variation of Average Nusselt Number with Time For Silicon Hemisphere at 

Two Different Reynolds Numbers (b/dn=0.5, ß=2.5) 
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The time required to reach steady-state for different Reynolds numbers is 

presented in Figure 3.28.  Foss was defined as the Fourier number at which the 

solid-fluid interface temperature everywhere on the hemispherical plate reached 

within 0.001% of the steady equilibrium distribution.  The time to reach thermal 

equilibrium condition decreases as the Reynolds number increases in value.  

This is due to more fluid flow rate available to carry away the heat and faster 

development of thermal boundary layer that is smaller in thickness. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28  Time Required to Reach Steady-State for Silicon Hemisphere at Different 
Reynolds Numbers (b/dn=0.5, ß=2.5) 
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on Figure 3.29.  The plate thickness significantly affects the temperature 

distribution.  It may be note that as the thickness of the hemispherical plate 

increases, the time needed to achieve steady-state conditions increases.  This is 

due to more storage capacity of heat within the solid.  Also, the temperature at 

the solid-fluid interface remains lower due to higher thermal resistance of the 

solid to the path of heat flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.29  Distribution of Dimensionless Maximum Temperature at the Solid-Fluid 

Interface, within the Solid, and Maximum-to-Minimum Temperature 
Difference with Time for Different Plate Thicknesses (Silicon Hemisphere 
Re=750, ß=2.5) 
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Figure 3.30 shows the average Nusselt number variation as a function of 

time for three distinct plate thicknesses using Constantan as the solid material.  

The average Nusselt number is higher for higher plate thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30  Variation of Average Nusselt Number with Time for Constantan Hemisphere 
at Three Different Thicknesses (Re=750, ß=2.5) 
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with a very low thermal conductivity such as Constantan maintains a higher 

temperature at the hemisphere’s outer surface and within the solid as the thermal 

conductivity controls how effective the heat flows and distributes throughout the 

material. The thermal diffusivity of the material also contributes to the transient 

behavior of the solid.  As noticed, Silicon and Copper reach the steady-state 

faster than Constantan due to their higher thermal diffusivity, which controls the 

rate of heat being transferred through the solid material. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.31  Distribution of Dimensionless Maximum Temperature at the Solid-Fluid 

interface, within the Solid, and Maximum-to-Minimum Temperature 
Difference with Time for Different Materials (Re=750, ß=2.5) 
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Figure 3.32 shows the distribution of average Nusselt Number with time 

for the three materials used in this study.  Constantan shows a higher average 

heat transfer coefficient compared to Silicon or Copper over the entire transient 

process.  A significant difference is seen at the earlier part of the transient and 

the curves come close together as the steady-state approaches.   

 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.32  Variation of Average Nusselt Number with Time for Different Materials 

(Re=750, b/dn,=0.5, ß=2.5) 
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Also, the property of the solid plays more significant role in determining the 

duration of the transient heat transfer process when the thickness is increased. 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.33   Time Needed to Reach Steady-State for Different Hemispherical Plate 

Thicknesses and for Different Materials (Re=750, ß=2.5) 
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concentric lines near the stagnation point and expand further down into the solid 

until a steady-state condition is achieved.     

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 

 
 
Figure 3.34   Isotherms Countour Lines at Varius Time Instants for Silicon Hemisphere 

Plate of b/dn=0.5 (Re=750, ß=2.5, Top Left Corner (z=0, r=0)) 
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Figure 3.35 shows the same phenomenon for b/dn=1.5.  The temperatures inside 

the solid are much lower as compared to a thinner plate and the time to reach 

steady-state equilibrium thermal condition increases. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.35   Isotherms Countour Lines at Varius Time Instants for Silicon Hemisphere 

Plate of b/dn=1.5 (Re=750, ß=2.5, Top Left Corner (z=0, r=0) 
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Chapter 4 Cylindrical Plate Model Results 
 

4.1 Steady State Heating 

A velocity vector distribution is shown in Figure 4.1. It can be observed 

that the velocity remains almost uniform at the potential core region of the jet.  

However, the velocity decreases and the fluid jet diameter increases as the fluid 

gets closer to the surface during the impingement process. The direction of 

motion of the fluid particles shifts along the angle of curvature, afterwards, the 

fluid accelerates creating a region of minimum sheet thickness. That is the 

beginning of the boundary layer zone. It can be noticed that as the fluid moves 

downstream along the convex surface, the boundary layer thickness increases 

and the frictional resistance from the wall is eventually transmitted to the entire 

film thickness where the fully viscous zone develops.  

 

 

 

 

 

 

 

 



www.manaraa.com

 67 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1  Velocity Vector Distribution for a Silicon Curved Plate with Water as the 

Cooling Fluid (Re = 750, b= 0.60 mm, Q = 5.665x10-7 m3/s,  β = 2.5, Hn = 0.3 
cm, q = 250 kW/m2) 

 

Fig. 4.2 shows the free surface height distribution for different Reynolds 

numbers when the jet strikes the curved plate’s surface. It can be seen that the 

fluid spreads out moving along the outer surface of the curved plate. As the 

Reynolds number increases, the free surface increases in thickness due to 

higher flow rate. In addition, a higher Reynolds number causes a higher 

rebounding velocity of the fluid particles at the impact that also contributes to a 

higher film thickness, particularly near the impingement region. For the conditions 

considered in the present investigation, the flow was supercritical and no 

hydraulic jump was present. 
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Figure 4.2  Free Surface Height Distribution for Different Reynolds Numbers and Water 

as the Cooling Fluid (b=0.60 mm, β=2.0, Hn=0.30 cm, q=250 kW/m2) 
 

Figures 4.3 and 4.4 show dimensionless interface temperature and local 

Nusselt number distributions as a function of dimensionless distance (s/dn) along 

the solid-fluid interface at different Reynolds numbers. The curves in Figure 4.3 

reveal that the dimensionless interface temperature decreases with jet velocity or 

Reynolds number.  The dimensionless interface temperature has the lowest 

value near the stagnation point (underneath the jet opening) where the fluid 

particles start to move along the disk surface (after the impingement process) 

and increases along the arc length reaching the highest value at the end of it. 

This also shows that an increasing Reynolds number contributes to a more 

effective cooling by the enhancement of convective heat transfer coefficient. 
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Figure 4.3 Dimensionless Interface Temperature Distribution for a Silicon Curved Plate at   
Different Reynolds Numbers and Water as the Cooling Fluid (β=2.5, Hn= 0.30 
cm, b=0.60 mm, q=250 kW/m2) 

 

The local Nusselt number shown in Figure 4.4 increases rapidly over a 

small distance measured from the stagnation point (core region), reaches a 

maximum around s/dn = 0.23, and then decreases along s as the boundary layer 

develops further downstream. The location of the maximum Nusselt number can 

be associated with the transition of the flow from the vertical impingement to 

displacement along the disk surface where the boundary layer starts to develop.  

Figure 4.4 also confirms that an increasing Reynolds number contributes to a 

more effective cooling by the enhancement of convective heat transfer 

coefficient.  The local Nusselt number increased very significantly all along the 

plate surface with the increase of Reynolds number. 

0

0.1

0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Dimensionless Distance, s/dn

D
im

e
n
si

o
n
le

ss
 I
n
te

r
fa

ce
 T

em
p
e
ra

tu
r
e ,
 ΘΘ ΘΘ

in
t

Re=500
Re=750
Re=1000
Re=1200
Re=1500
Re=1800



www.manaraa.com

 70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4  Local Nusselt Number Distribution for a Silicon Curved Plate at Different 

Reynolds Numbers and Water as the Cooling Fluid (β =2.5, Hn=0.30 cm, 
b=0.60 mm, q=250 kW/m2) 

 

Figure 4.5 plots the average Nusselt number (Nuav) and maximum 

temperature in the solid (Θmax) as a function of Reynolds number. It may be 

noted that average Nusselt number increases with Reynolds number and 

maximum temperature within the solid decreases with increasing Reynolds 

number.  The maximum temperature happens at the outer edge of the plate 

adjacent to the inner surface which is heated. As the flow rate (or Reynolds 

number) increases, the magnitude of fluid velocity near the solid-fluid interface 

that controls the convective heat transfer rate increases.  That results in lowering 

of the maximum temperature.  The control of maximum temperature may be 

crucial in the thermal management of electronic equipment. 
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Figure 4.5  Average Nusselt Number and Maximum Temperature Within the Solid for 
Different Reynolds Numbers for Constant Heat Flux Conditions (q = 250 
KW/m2, β=2.5, Hn = 0.30cm) 

 

The solid-fluid dimensionless interface temperature and local Nusselt 

number distributions for six different nozzle-to-target spacing for water as the 

cooling fluid and Reynolds number of 750 are shown in Figures 4.6 and 4.7 

respectively. As the curved plate surface gets closer to the nozzle (smaller 

nozzle-to-target spacing ratio), the temperature at the  solid- fluid interface 

decreases due to higher jet momentum at impingement that causes higher 

velocity of fluid particles adjacent to the plate enhancing the heat transfer. 
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Figure 4.6  Dimensionless Interface Temperature for Silicon Curved Plate for Different 

Nozzle to Target Spacing Ratio (β) and Water as the Cooling Fluid (Re=750, 
dn=1.2mm, b=0.60 mm, q=250 kW/m2) 

 

Therefore, in Figure 4.7, a higher Nusselt number is seen all along the arc 

length.  It can be noticed that the impingement height affects the Nusselt number 

more at the stagnation region and the early part of the boundary layer region.  At 

larger arc length the values are in a small range for all impingement heights. This 

is quite expected since the jet momentum more strongly affects the areas 

subjected to direct impingement.  It can be also noticed that no significant 

change is seen at heights higher than β=2, where impingement height does not 

play a strong role in determining the convective heat transfer process. 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Dimensionless Distance, s/dn

D
im

e
n
si

o
n
le

ss
 I
n
te

r
fa

c
e 

T
e
m

p
e
r
a
tu

re
,   
ΘΘ ΘΘ

in
t

β=0.75

β=1.0

β=1.5

β=2.0

β=2.5

β=3.0



www.manaraa.com

 73 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.7  Local Nusselt Number Distribution for Silicon Curved Plate for Different 

Nozzle to Target Spacing Ratio (β) and Water as the Cooling Fluid (Re=750, 
dn=1.2mm, b=0.60mm,  q=250kW/m2) 

 

Therefore, in Figure 4.7, a higher Nusselt number is seen all along the arc 

length.  It can be noticed that the impingement height affects the Nusselt number 

more at the stagnation region and the early part of the boundary layer region.  At 

larger arc length the values are in a small range for all impingement heights. This 

is quite expected since the jet momentum more strongly affects the areas 

subjected to direct impingement.  It can be also noticed that no significant 

change is seen at heights higher than β=2, where impingement height does not 

play a strong role in determining the convective heat transfer process. 
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solid-fluid interface temperature of water flowing on the curved plate with different 

Ri/dn as a function of dimensionless distance (s/dn). The corresponding 

distribution for a flat plate (infinite radius of curvature) is also shown for 

comparison.  In order to keep the same energy input to the plate in these runs, 

the value of arc length s was kept constant.  Therefore, half cylindrical plate 

(shown in Fig. 1) was possible only for the smaller radius of curvature 

(Ri/dn=4.16).  For other plates, the arc extended over an angle of φmaxthat is less 

than π/2.  For flat disk, s was same as its radius. It can be noticed that decreasing 

the inner plate radius of curvature to nozzle diameter ratio (Ri/dn) decreases the 

dimensionless interface temperature. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.8  Dimensionless Interface Temperature for Silicon Curved Plate for Different 

Inner Plate Radius of Curvature to Nozzle Diameter Ratio (Ri/dn) for Water as 
the Cooling Fluid (β =2.5 , Hn = 0.30 cm Re=750, dn=1.2mm, b=0.60 mm, 
q=250 kW/m2) 
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This is because the fluid particles are subjected to a larger gravitational 

force that increases the local fluid velocity near the solid-fluid interface and 

results in larger rate of convective heat transfer. Figure 4.9 plots the local Nusselt 

number distribution for different inner plate radius of curvature to nozzle diameter 

ratio (Ri/dn) including a flat plate as a function of dimensionless distance (s/dn). A 

higher Nusselt number is encountered when Ri/dn diminishes increasing the 

cooling capacity of the fluid.  For all cases, the maximum local Nusselt number is 

encountered at s/dn≈0.23 and after that it decays monotonically.  The trend in 

Figure 4.9 agrees with the results reported by Martin [39].   

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.9  Local Nusselt Number Distribution for Silicon Curved Plate for Different Inner 

Plate Radius of Curvature to Nozzle Diameter Ratio (Ri/dn) for Water as the 
Cooling Fluid (β =2.5 , Hn = 0.30 cm Re=750, dn=1.2mm, b=0.60 mm, q=250 
kW/m2) 
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Figure 4.10 plots the average Nusselt number (Nuav) and the maximum 

temperature within the solid (θmax) as a function of the inner plate radius of 

curvature to nozzle diameter ratio (Ri/dn). As expected, the average Nusselt 

number decreases with increasing inner radius of curvature and maximum 

temperature increases.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10   Average Nusselt Number and Maximum Temperature in the Solid 

Variations (Θmax) for Silicon Curved plate for Different Inner Plate Radius of 
Curvature to Nozzle Diameter Ratio (Ri/dn) for Water as the Cooling Fluid (β 
=2.5 , Hn = 0.30 cm Re=750, dn=1.2mm, b=0.60 mm, q=250 kW/m2) 
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inlet velocity.  A higher jet velocity essentially contributes to a higher fluid velocity 

near the solid-fluid interface and higher value of convective heat transfer 

coefficient.  However, since the Nusselt number used the slot width as the length 

scale, increasing (dn) results in a higher local Nusselt number along the solid-fluid 

interface. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11  Heat Transfer Coefficient and Nusselt Number Distributions for Different 

Nozzle Slot Widths (Q=0.0006 m
3
/s, β =2.5 , Hn = 0.30 cm β=2.5, Re=750, 

q=250 kW/m2) 
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conduction.  It may be also noticed that the temperature is lower at the 

stagnation region and it increases as s/dn increases all the way to the end of the 

plate.  It can be also noted that a thinner plate provides a lower Nusselt number 

at the stagnation region but increases to provide higher maximum value and 

maintains a higher value as the fluid moves downstream along the curved plate.  

Thus, a thinner plate contributes to a more effective cooling by convection as 

opposed to a thicker plate. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12  Dimensionless Interface Temperature for Different Plate Thicknesses (β 
=2.5,  Re=750, dn=1.2mm, q=250 kW/m2) 
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Figure 4.13  Local Nusselt Number Distribution for Different Plate Thicknesses (β =2.5, 

Re=750, Hn = 0.30 cm, q=250 kW/m2) 
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thickness was higher, as the heat flux at the inner surface of the plate and outer 

radius of the plate were kept constants in these simulations. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.14  Average Nusselt Number and Maximum Temperature in the Solid 

Variations with Plate Thickness (β =2.5, Re=750) 
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of the plate resulting in better cooling performance.  Figure 4.16 displays the 

local heat transfer coefficient and local Nusselt number for these three fluids.  A 

higher Nusselt number distribution is encountered when MIL-7808 is used as the 

working fluid in comparison with FC-77 (q=50 kW/m2) and water. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15  Dimensionless Interface Temperature for Different Cooling Fluids 
(β=2.5,  Re=750)   
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highest heat transfer coefficient is obtained for water.  FC-77 (kf =0.06299 W/m 

K) gives much lower heat transfer coefficient compared to water or MIL-7808 

because of its lowest thermal conductivity. These results were obtained for a 

constant Reynolds number of 750. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.16   Heat Transfer Coefficient and Nusselt Number Distributions for Different 

Cooling Fluids (Re=750, β=2.5) 
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this simulation. The parameters used and their corresponding values according 

to Bartoli and Faggiani [21] were the following: Re=3500–20,000, TJ=293.15–

323.15 K, Pr=3.57–6.99, q=50 kW/m2, φ=0°-90°, β=5.5, and b=0.5 mm. Figure 

4.17 compared the results obtained in the numerical simulation with the 

correlation proposed by Bartoli and Faggiani [21] for Nu/Pr0.4. The difference is 

3.60% at Re= 3,500 and 1.88% at Re= 15,000.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.17  Local Nusselt Number Compared with Bartoli and Faggiani [21] at Different 

Reynolds Numbers (φ=90°, dn=2.0 mm, b=0.50 mm, q=50 kW/m2) 
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Numerical simulations were also carried out to compare with the results 

obtained by Gori and Bossi [29] on the cooling of a hollow stainless steel circular 

cylinder by a turbulent flow of air from a slot nozzle.  The numerical model tried to 

mimic the experimental set up that the authors used to obtain the desired 

outcome for a constant heat flux condition.  In addition, a correlation suggested 

by Whitaker [40] for uniform fluid flow was also used for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.18  Average Nusselt Number Compared with Gori and Bossi [29] and Whitaker 

[40] for Different Reynolds Numbers (dn=2.5 mm, b = 0.2 mm, q=2.35 
kW/m2) 
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the correlation proposed by Whitaker [40].  The values used during the simulation 

included a Reynolds numbers range of 4000-20,000, a fluid inlet (jet) 

temperature (TJ) of 293.15–296.15 K, the fluid Prandtl number (Pr) of 0.711–

0.712, a constant heat flux (q) of 2.35 kW/m2, an azimuthal angle (φ) οf 0°-90°, a 

fixed dimensionless nozzle to target spacing ratio (β) of 8.0, and a fixed thickness 

(b) of 0.2 mm as specified by the authors.  

The difference of the numerical simulation and the experimental results 

obtained by Gori and Bossi [29] was between 6.80%-23.77% with an average 

difference of 15.92%.  The correlation proposed by Whitaker compared within a 

range of 1.76%-15.82% with an average difference of 9.31%.  Considering the 

uncertainly of experimental data and the discretization and round-off errors 

inherent in numerical simulation, both of these comparisons may be considered 

to be quite satisfactory. 

 
 
4.2 Transient Heating 

 
The local heat flux variation along the solid-fluid interface for different time 

intervals is shown in Figure 4.19. Since an initial isothermal condition was 

assumed at the beginning of the process, the interfacial heat flux is zero at t=0 s.  

As expected, the heat flux at the solid-fluid interfaces increases with time.  A 

much larger heat flux is seen at the stagnation region since the cold fluid at the 

jet strikes that region and keeps the minimum temperature at that location.  This 

behavior occurs due to the constant renewal of cold fluid to dissipate the heat.  

The heat dissipated is utilized to rise the temperature of the solid as well as the 
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fluid and reduces thermal storage within the solid due to convective heat transfer.  

Another maximum heat flux is encountered around s/dn=0.5, and then it 

decreases downstream.  This can be explained as the transition of the fluid from 

the vertical impingement to a thin film flow along the curved surface where the 

boundary layer starts to develop.  This crest can be associated with the start of 

the thermal boundary layer in the thin film structure. Figure 4.19 also presents 

qav,int ro
2/qwri

2 which is the ratio of the energy transmitted to the fluid to the energy 

input at the bottom face of the plate.  The interfacial heat flux reaches within 1% 

of the steady-state equilibrium condition at Fo= 0.103. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.19  Dimensionless Local Heat flux Variation at the Solid-Fluid Interface for 

Silicon Plate at Different Time Instants (Re=750, b/dn=0.5, ß=2.5) 
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Figure 4.20 shows the dimensionless interface temperature for different 

time instants. As can be observed at the very beginning of the heat transfer 

process, the solid-fluid interface keeps a uniform temperature compared to that 

when approaching steady-state equilibrium condition.  This pattern is due to the 

thermal storage in the fluid necessary to develop the thermal boundary layer 

since an isothermal condition was present at the beginning of the problem.  As 

time goes on, the thickness of the thermal boundary layer increases and 

therefore the temperature rises. Figure 4.20 also illustrates the difference of 

maximum-to-minimum temperature at the interface being the maximum situated 

at the outer edge of the plate and the minimum at the stagnation point of the 

plate due to the constant renewal of cold fluid from the nozzle.  Thus, such 

temperature difference increases with time as more heat flows throughout the 

solid and transmitted to the fluid.  The range of temperature encountered at the 

solid-fluid interface increases with time and reaches a constant value at the 

steady state.  Figure 4.21 plots the local Nusselt number variation along the 

solid-fluid interface at different time instants.  The local Nusselt number is 

controlled by local temperature and heat flux at the solid-fluid interface. This 

means that all heat reaching the solid-fluid interface via conduction through the 

solid is more efficiently convected out as the local fluid temperature is low 

everywhere at the interface.   
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Figure 4.20  Dimensionless Interface Temperature Variation for Silicon Plate at Different 

Time Instants (Re=750, b/dn=0.5, ß=2.5) 
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Figure 4.21  Local Nusselt Number Distribution for Silicon Plate at Different Time 

Instants (Re=750, b/dn=0.5, ß=2.5) 
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Figure 4.22   Distribution of Dimensionless Maximum Temperature at the Solid-Fluid 

Interface, within the Solid, and Maximum-to-Minimum Temperature 
Difference with Time for Two Reynolds Numbers (Silicon Plate, b/dn=0.5, 
ß=2.5) 
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Figure 4.23  Variation of Average Nusselt Number with Time For Silicon Plate at Two 

Different Reynolds Numbers (b/dn=0.5, ß=2.5) 
 

The time required to reach steady-state for different Reynolds numbers is 

presented in Figure 4.24.  Foss was defined as the Fourier number at which the 

solid-fluid interface temperature everywhere on the solid plate reached within 

0.001% of the steady equilibrium distribution.  The time to reach thermal 

equilibrium condition decreases as the Reynolds number increases in value.  

This is due to more fluid flow rate available to carry away the heat and faster 

development of thermal boundary layer that is smaller in thickness. 

 

 
 
 

0

30

60

90

120

150

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Fourier Number, Fo

A
v
er

a
g
e 

N
u
ss

e
lt
 N

u
m

b
e
r,

 N
u

a
v

Series1

Series2

Nuav, Re=500 

Nuav, Re=1000 



www.manaraa.com

 92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4.24  Time Required to Reach Steady-State for Silicon Plate at Different 

Reynolds Numbers (b/dn=0.5, ß=2.5) 
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Figure 4.25   Distribution of Dimensionless Maximum Temperature at the Solid-Fluid 

Interface, within the Solid, and Maximum-to-Minimum Temperature 
Difference with Time for Different Plate Thicknesses (Silicon Plate Re=750, 
ß=2.5) 
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Figure 4.26  Variation of Average Nusselt Number with Time for Constantan Plate at 

Three Different Thicknesses (Re=750, ß=2.5) 
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Figure 4.27  Distribution of Dimensionless Maximum Temperature at the Solid-Fluid 

interface, within the Solid, and Maximum-to-Minimum Temperature 
Difference with Time for Different Materials (Silicon Plate, Re=750, ß=2.5) 
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Figure 4.28  Variation of Average Nusselt Number with Time for Different Materials 

(Re=750, b/dn,=0.5, ß=2.5) 
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Figure 4.29   Time Needed to Reach Steady-State for Different Cylindrical Plate 

Thicknesses and for Different Materials (Re=750, ß=2.5) 
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Chapter 5 Discussion and Conclusion 

 

Local and average Nusselt number and heat transfer coefficient 

distributions showed a strong dependence on the impingement velocity or 

Reynolds number. As the velocity increases, the boundary layer or film thickness 

decreases and Nusselt number increases over the entire solid-fluid interface. A 

lower thermal conductivity material showed higher local maximum Nusselt 

number as well as higher average Nusselt number among all studied materials. 

On the other hand, materials with higher thermal conductivity maintained a more 

uniform temperature distribution throughout the solid-fluid interface and facilitated 

a higher heat transfer rate, lowering the maximum temperature inside the 

hemisphere and at its interface. Also, increasing the thickness of the 

hemispherical plate proved to decrease the solid-fluid interface temperature due 

to the resistance of the material to heat flow.  The Nusselt number, however, did 

not change much with thickness variation.  The impingement height affected the 

dimensionless interface temperature as well as the Nusselt number.  A higher jet 

impingement height provided a lower dimensionless interface temperature over 

the entire hemisphere and a higher Nusselt number at the stagnation region. 

Temperature and heat flux at the solid-fluid interface rise with time 

whereas the average heat transfer coefficient decreases with time.  A larger heat 
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flux is seen near the stagnation region because of the larger temperature 

difference between the water jet and the plate.  The maximum dimensionless 

interface temperature was encountered at the outer edge of the cylindrical plate 

while the minimum was encountered at the stagnation region.  Local Nusselt 

number is high near the stagnation region where convective heat transfer rate is 

more effective and then it decays monotonically along the remaining portion of 

the plate.  The Reynolds number was found to be an essential parameter in 

controlling the transient process since the time required to reach steady state 

diminished as the Reynolds number increased.  Also, the maximum temperature 

at the solid-fluid interface as well as the temperature inside the solid decreased 

as the Reynolds number increased while the maximum to minimum temperature 

difference a the interface decreased as the Reynolds number decreased.  

Increasing the plate thickness decreased the capacity of the plate of being 

effectively cooled (lower average Nusselt number) and decreased dimensionless 

maximum temperature at the interface and within the solid.  The time required to 

reach steady-state became larger as the thickness of the plate increased.  

Materials with a higher thermal conductivity maintained a lower dimensionless 

solid-fluid interface temperature as well as dimensionless maximum temperature 

and reached steady-state faster. Nevertheless, Constantan demonstrated to 

have a higher average Nusselt number in comparison to Copper and Silicon. The 

isothermal lines within the solid demonstrated the transition from a conduction 

only at the very early part of the transient to conduction-convection equilibrium 

heat transfer as the steady state was arrived. 
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Appendix A: CFD Code for Axisymetric Model (FIDAP) 

/ File opened for write Mon Oct  2 16:06:01 2006. 

/ File opened for write Thu Jun 15 16:15:56 2006. 

TITLE(  ) 

FREE SURFACE JET ON CYLINDER 

FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 1, 

MLOO = 1, 

MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1, TOLE = 

0.0001 ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

    0.000000    0.000000    0.000000    1.000000 

   -10.00000    10.00000    -7.50000     7.50000    -7.50000     

7.50000 

//POINTS 

POINT( ADD, COOR ) 

    0,     0 

  0.3,     0 

 0.36,     0 

 0.86,     0 

 0.86,   0.5 

 0.86,  0.56 

 0.86,  0.59 

0.273,  0.06 

    0,  0.06 

    0,  0.59 

//LINES 

POINT( SELE, ID ) 

    4,     5 

    3 

CURVE( ADD, ARC, CENT ) 

POINT( SELE, ID ) 

    4 

    6 

    2 

CURVE( ADD, ARC, CENT ) 

POINT( SELE, ID ) 

    4 

    7,     8 

CURVE( ADD, ARC, CENT ) 

POINT( SELE, ID ) 

    8,     9 

    1,     3 

CURVE( ADD, LINE ) 

POINT( SELE, ID ) 

    5,     7 

CURVE( ADD, LINE ) 

//CREATE SURFACE 

POINT( SELE, ID ) 

   10 

    7   
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Appendix A:  (Continued) 
 
      1 
    4 

SURFACE( ADD, POIN, ROWW = 2, NOAD ) 

//MESH EDGES 

CURVE( SELE, ID ) 

    1,     3 

MEDGE( ADD, SUCC, INTE = 62, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 4 ) 

MEDGE( ADD, SUCC, INTE = 70, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 5 ) 

MEDGE( ADD, SUCC, INTE = 20, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 6 ) 

MEDGE( ADD, SUCC, INTE = 70, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID ) 

    7,     8 

MEDGE( ADD, SUCC, INTE = 20, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 9 ) 

MEDGE( ADD, SUCC, INTE = 20, RATI = 0, 2RAT = 0, PCEN = 0 ) 

//MESH LOOPS 

/LOOP 1 

CURVE( SELE, ID ) 

    5 

    4 

    3 

    9 

    2 

    6 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 2, EDG3 = 1, EDG4 = 2 ) 

/LOOP 2 

CURVE( SELE, ID ) 

    7 

    2 

    8 

    1 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1 ) 

//MESH FACES 

/FACE 1 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 1 ) 

MFACE( ADD ) 

/FACE 2 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 2 ) 

MFACE( ADD ) 

//MESH FACE ENTITIES 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( SELE, ID = 1 ) 

MFACE( MESH, MAP, ENTI = "fluid" ) 

MFACE( SELE, ID = 2 ) 

MFACE( MESH, MAP, ENTI = "solid" ) 

//MESH EDGE ENTITIES 

ELEMENT( SETD, EDGE, NODE = 2 ) 

MEDGE( SELE, ID = 1 ) 
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Appendix A:  (Continued) 
 

MEDGE( MESH, MAP, ENTI = "bottom" ) 

MEDGE( SELE, ID = 2 ) 

MEDGE( MESH, MAP, ENTI = "interface" ) 

MEDGE( SELE, ID ) 

    3,     4 

MEDGE( MESH, MAP, ENTI = "free" ) 

MEDGE( SELE, ID = 5 ) 

MEDGE( MESH, MAP, ENTI = "f-inlet" ) 

MEDGE( SELE, ID ) 

    6,     7 

MEDGE( MESH, MAP, ENTI = "syme" ) 

MEDGE( SELE, ID = 8 ) 

MEDGE( MESH, MAP, ENTI = "s-wall" ) 

MEDGE( SELE, ID = 9 ) 

MEDGE( MESH, MAP, ENTI = "f-out" ) 

END(  ) 

FIPREP(  ) 

//Fluid and solid properties 

/B=2.5, D=0.12 

/FLUID 

DENSITY( ADD, SET = "water", CONS = 0.996 ) 

CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 

VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 

SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 

SURFACETENSION( ADD, SET = "water", CONS = 73 ) 

/ 

/SOLID 

DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 

CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 

SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 

/ 

/ENTITIES 

ENTITY( ADD, NAME = "fluid", FLUI, PROP = "water" ) 

ENTITY( ADD, NAME = "solid", SOLI, PROP = "silicon" ) 

ENTITY( ADD, NAME = "bottom", PLOT ) 

ENTITY( ADD, NAME = "syme", PLOT ) 

ENTITY( ADD, NAME = "s-wall", PLOT ) 

ENTITY( ADD, NAME = "f-inlet", PLOT ) 

ENTITY( ADD, NAME = "f-out", PLOT ) 

ENTITY( ADD, NAME = "interface", PLOT, ATTA = "solid", NATT = "fluid" ) 

ENTITY( ADD, NAME = "free", SURF, ATTA = "fluid", DEPT = 21, SPIN, 

STRA, 

ANG1 = 80, ANG2 = 180 ) 

/ 

/SPECIFY BOUNDARY CONDITIONS 

BCNODE( ADD, COOR, NODE = 190 ) 

BCNODE( ADD, SURF, NODE = 190, ZERO ) 

BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 

BCNODE( ADD, UY, ENTI = "f-inlet", ZERO ) 

BCNODE( ADD, UX, ENTI = "f-inlet", CONS = 33.38353 ) 

BCNODE( ADD, UY, ENTI = "syme", ZERO ) 

BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 

BCNODE( ADD, VELO, ENTI = "s-wall", ZERO ) 
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Appendix A:  (Continued) 
 

BCNODE( ADD, TEMP, ENTI = "f-inlet", CONS = 37 ) 

BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 5.971 ) 

BCNODE( ADD, VELO, ENTI = "solid", ZERO ) 

/ 

/PROBLEM DEFINITION 

PROBLEM( 2-D, LAMI, NONL, NEWT, MOME, ENER, FREE, TRAN, SING ) 

BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 

PRESSURE( ADD, MIXE = 1e-11, DISC ) 

DATAPRINT( ADD, CONT ) 

EXECUTION( ADD, NEWJ ) 

PRINTOUT( ADD, NONE ) 

OPTIONS( ADD, UPWI ) 

UPWINDING( ADD, STRE ) 

/ 

/SOLUTION ALGORITHM 

SOLUTION( ADD, N.R. = 50, KINE = 25, VELC = 0.0001, RESC = 0.0001, 

SURF = 0.001 ) 

TIMEINTEGRATION( ADD, BACK, NSTE = 1000, TSTA = 0, DT = 1e-07, VARI, 

WIND = 9, 

NOFI = 10 ) 

POSTPROCESS( NBLO = 2 ) 

    1,   201,     1 

  201,  1000,     1 

/ 

/INITIAL CONDITIONS 

ICNODE( ADD, UY, ENTI = "fluid", CONS = 18.38353 ) 

ICNODE( ADD, UX, ENTI = "fluid", CONS = 23.38353 ) 

ICNODE( ADD, TEMP, ENTI = "fluid", CONS = 37 ) 

END(  ) 

CREATE( FISO ) 

RUN( FISOLV, BACK ) 

/ File closed at Mon Oct  2 16:06:12 2006. 

/ File opened for append Tue Oct  3 12:46:08 2006. 

FIPOST(  ) 

TIMESTEP( STEP = -1 ) 

TIMESTEP( STEP = 322 ) 

CONVERGENCE( ALL, SOLU, LOG ) 

VECTOR( VELO ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

    -0.37148    -0.15563    -0.36300    -0.17218     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

      



www.manaraa.com

 110 

Appendix A:  (Continued) 
 
WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

    -0.42935    -0.31361    -0.30826    -0.20659     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

    -0.43717    -0.33551    -0.29887    -0.20972     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

    -0.29797    -0.04771    -0.36300    -0.14089     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 
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WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.11340     0.41840     0.06401     0.33460     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.31204     0.52320     0.16255     0.35024     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

CONTOUR( TEMP, AUTO ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

CONTOUR( TEMP, AUTO = 200 ) 

MESH( NNUM ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 
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    -0.19004     0.00547    -0.35049    -0.17687     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

    -0.13912    -0.09816    -0.30546    -0.26914     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

CONTOUR( TEMP, AUTO = 200 ) 

LINE( TEMP, ENTI = "interface" ) 

PRINT( TEMP, ENTI = "interface", SCRE ) 

PRINT( TEMP, NODE, NOD1 = 2913, NOD2 = 4053, NGEN = 19, SCRE ) 

PRINT( TEMP, NODE, NOD1 = 349, SCRE ) 

PRINT( TEMP, NODE, NOD1 = 386, SCRE ) 

END(  ) 

END(  ) 

/ File closed at Tue Oct  3 12:52:48 2006. 

/ File opened for append Wed Oct  4 19:38:28 2006. 

FIPOST(  ) 

TIMESTEP( STEP = -1 ) 

TIMESTEP( STEP = 322 ) 

VECTOR( VELO ) 

GROUP( ENTI = "fluid" ) 

VECTOR( VELO ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.29640     0.52477     0.15316     0.35650     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 
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Appendix A:  (Continued) 
 
   45.000000   45.000000   45.000000   45.000000 

REDO 

CONTOUR( STRE, AUTO ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.27138     0.47315     0.17819     0.35650     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

CONTOUR( TEMP, AUTO ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.23227     0.48723     0.12344     0.34868     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

   -0.430000   -0.295000    0.000000    1.000000 

     0.00000     0.00000     0.00000     0.00000     0.00000     

0.00000 

   45.000000   45.000000   45.000000   45.000000 

REDO 

VECTOR( VELO ) 

DEVICE( POST, FILE = "500" ) 

VECTOR( VELO ) 

CONTOUR( STRE, AUTO ) 

CONTOUR( TEMP, AUTO ) 

END(  ) 

END(  ) 

/ File closed at Wed Oct  4 19:48:27 2006. 
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Appendix B: CFD Code for 2-D Model 
 

/ File opened for write Fri Sep 22 20:31:22 2006. 

// File opened for write Wed Mar  1 02:13:54 2006. 

TITLE(  ) 

FREE SURFACE JET IMPINGMENT 

FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 1, 

MLOO = 1, 

MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1, TOLE = 1e-

05 ) 

WINDOW(CHANGE= 1, MATRIX ) 

    1.000000    0.000000    0.000000    0.000000 

    0.000000    1.000000    0.000000    0.000000 

    0.000000    0.000000    1.000000    0.000000 

    0.000000    0.000000    0.000000    1.000000 

   -10.00000    10.00000    -7.50000     7.50000    -7.50000     

7.50000 

WINDOW( CHAN = 1, MATR ) 

    1,     0,     0,     0 

    0,     1,     0,     0 

    0,     0,     1,     0 

    0,     0,     0,     1 

  -10,    10,  -7.5,   7.5,  -7.5 

  7.5 

//POINTS 

POINT( ADD, COOR, X = 0, Y = 0 ) 

POINT( ADD, COOR, X = -0.06, Y = 0 ) 

POINT( ADD, COOR, X = -0.3, Y = 0 ) 

POINT( ADD, COOR, X = -0.3, Y = 0.06 ) 

POINT( ADD, COOR, X = -0.16, Y = 0.2 ) 

POINT( ADD, COOR, X = -0.1, Y = 0.31 ) 

POINT( ADD, COOR, X = 0.03, Y = 0.47 ) 

POINT( ADD, COOR, X = 0.27, Y = 0.62 ) 

POINT( ADD, COOR, X = 0.5, Y = 0.66 ) 

POINT( ADD, COOR, X = 0.5, Y = 0.56 ) 

POINT( ADD, COOR, X = 0.5, Y = 0.5 ) 

POINT( ADD, COOR, X = 0.319, Y = 0.466 ) 

POINT( ADD, COOR, X = 0.1516, Y = 0.359 ) 

POINT( ADD, COOR, X = 0.0565, Y = 0.231 ) 

POINT( ADD, COOR, X = 0.021, Y = 0.1425 ) 

POINT( ADD, COOR, X = 0.0036, Y = 0.06 ) 

POINT( ADD, COOR, X = -0.06, Y = 0 ) 

POINT( ADD, COOR, X = -0.0596, Y = 0.0672 ) 

POINT( ADD, COOR, X = -0.041, Y = 0.16 ) 

POINT( ADD, COOR, X = 0.0033, Y = 0.2587 ) 

POINT( ADD, COOR, X = 0.112, Y = 0.399 ) 

POINT( ADD, COOR, X = 0.299, Y = 0.52 ) 

POINT( ADD, COOR, X = -0.3, Y = 0.66 ) 

POINT( ADD, COOR, X = 0.5, Y = 0 ) 

//LINES (1,2,3,4) 

POINT( SELE, ID = 1 ) 

POINT( SELE, ID = 2 ) 

CURVE( ADD, LINE ) 
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Appendix B:  (Continued) 
 
POINT( SELE, ID = 3 ) 

POINT( SELE, ID = 4 ) 

CURVE( ADD, LINE ) 

POINT( SELE, ID = 4 ) 

POINT( SELE, ID = 5 ) 

POINT( SELE, ID = 6 ) 

CURVE( ADD, ARC ) 

//LINES (5,6) 

CURVE( SELE, ID = 4 ) 

POINT( SELE, ID = 5 ) 

CURVE( SPLI ) 

//LINES (7,8,9) 

POINT( SELE, ID = 6 ) 

POINT( SELE, ID = 7 ) 

POINT( SELE, ID = 8 ) 

CURVE( ADD, ARC ) 

CURVE( SELE, ID = 7 ) 

POINT( SELE, ID = 7 ) 

CURVE( SPLI ) 

CURVE( SELE, ID = 9 ) 

CURVE( DELE ) 

POINT( SELE, ID = 7 ) 

POINT( SELE, ID = 8 ) 

POINT( SELE, ID = 9 ) 

CURVE( ADD, ARC ) 

//LINES (10,11,12,13) 

POINT( SELE, ID = 9 ) 

POINT( SELE, ID = 10 ) 

CURVE( ADD, LINE ) 

POINT( SELE, ID = 10 ) 

POINT( SELE, ID = 11 ) 

CURVE( ADD, LINE ) 

POINT( SELE, ID ) 

   11 

   12 

   13 

CURVE( ADD, ARC ) 

POINT( SELE, ID ) 

   13 

   14 

   15 

CURVE( ADD, ARC ) 

CURVE( SELE, ID = 13 ) 

POINT( SELE, ID = 14 ) 

CURVE( SPLI ) 

//LINES (14,15,16,17,18) 

POINT( SELE, ID ) 

   15 

   16 

    1 

CURVE( ADD, ARC ) 
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Appendix B:  (Continued) 
 
//LINES (19,20,21,22) 

POINT( SELE, ID ) 

    2 

   18 

   19 

CURVE( ADD, ARC ) 

CURVE( SELE, ID = 19 ) 

POINT( SELE, ID = 18 ) 

CURVE( SPLI ) 

POINT( SELE, ID ) 

   19 

   20 

   21 

CURVE( ADD, ARC ) 

//LINES (23,24,25,26) 

CURVE( SELE, ID = 22 ) 

POINT( SELE, ID = 20 ) 

CURVE( SPLI ) 

POINT( SELE, ID ) 

   21 

   22 

   10 

CURVE( ADD, ARC ) 

POINT( SELE, ID ) 

   20 

    6 

CURVE( ADD, LINE ) 

/SURFACES 

POINT( SELE, ID = 24 ) 

POINT( SELE, ID = 3 ) 

POINT( SELE, ID = 9 ) 

POINT( SELE, ID = 23 ) 

SURFACE( ADD, POIN, ROWW = 2, NOAD ) 

//MESH EDGES 

CURVE( SELE, ID = 1 ) 

MEDGE( ADD, SUCC, INTE = 10, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 2 ) 

MEDGE( ADD, SUCC, INTE = 30, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 3 ) 

MEDGE( ADD, SUCC, INTE = 15, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 5 ) 

MEDGE( ADD, SUCC, INTE = 22, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 6 ) 

MEDGE( ADD, SUCC, INTE = 16, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 8 ) 

MEDGE( ADD, SUCC, INTE = 22, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 9 ) 

MEDGE( ADD, SUCC, INTE = 44, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 10 ) 

MEDGE( ADD, SUCC, INTE = 30, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 11 ) 
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Appendix B:  (Continued) 
 
CURVE( SELE, ID = 14 ) 

MEDGE( ADD, SUCC, INTE = 22, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 15 ) 

MEDGE( ADD, SUCC, INTE = 16, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 17 ) 

MEDGE( ADD, SUCC, INTE = 22, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 18 ) 

MEDGE( ADD, SUCC, INTE = 15, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 20 ) 

MEDGE( ADD, SUCC, INTE = 15, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 21 ) 

MEDGE( ADD, SUCC, INTE = 22, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 23 ) 

MEDGE( ADD, SUCC, INTE = 16, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 24 ) 

MEDGE( ADD, SUCC, INTE = 22, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 25 ) 

MEDGE( ADD, SUCC, INTE = 44, RATI = 0, 2RAT = 0, PCEN = 0 ) 

CURVE( SELE, ID = 26 ) 

MEDGE( ADD, SUCC, INTE = 30, RATI = 0, 2RAT = 0, PCEN = 0 ) 

//MESH LOOPS 

//LOOP 1 

CURVE( SELE, ID = 2 ) 

CURVE( SELE, ID = 3 ) 

CURVE( SELE, ID = 5 ) 

CURVE( SELE, ID = 6 ) 

CURVE( SELE, ID = 26 ) 

CURVE( SELE, ID = 23 ) 

CURVE( SELE, ID = 21 ) 

CURVE( SELE, ID = 20 ) 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 3, EDG3 = 1, EDG4 = 3 ) 

//LOOP 2 

CURVE( SELE, ID = 26 ) 

CURVE( SELE, ID = 8 ) 

CURVE( SELE, ID = 9 ) 

CURVE( SELE, ID = 10 ) 

CURVE( SELE, ID = 25 ) 

CURVE( SELE, ID = 24 ) 

MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 2, EDG3 = 1, EDG4 = 2 ) 

//LOOP 3 

CURVE( SELE, ID = 1 ) 

CURVE( SELE, ID = 20 ) 

CURVE( SELE, ID = 21 ) 

CURVE( SELE, ID = 23 ) 

CURVE( SELE, ID = 24 ) 

CURVE( SELE, ID = 25 ) 

CURVE( SELE, ID = 11 ) 

CURVE( SELE, ID = 12 ) 

CURVE( SELE, ID = 14 ) 

CURVE( SELE, ID = 15 ) 

CURVE( SELE, ID = 17 )CURVE( SELE, ID = 18 ) 
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SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 1 ) 

MFACE( ADD ) 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 2 ) 

MFACE( ADD ) 

SURFACE( SELE, ID = 1 ) 

MLOOP( SELE, ID = 3 ) 

MFACE( ADD ) 

// MESHING 

MFACE( SELE, ID = 3 ) 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, NOSM, ENTI = "silicon" ) 

MFACE( SELE, ID = 1 ) 

MFACE( SELE, ID = 2 ) 

ELEMENT( SETD, QUAD, NODE = 4 ) 

MFACE( MESH, MAP, ENTI = "water" ) 

//MESH MAP ELEMENT ID 

ELEMENT( SETD, EDGE, NODE = 2 ) 

MEDGE( SELE, ID ) 

    1 

    9 

MEDGE( MESH, MAP, ENTI = "sides" ) 

MEDGE( SELE, ID = 2 ) 

MEDGE( MESH, MAP, ENTI = "axis" ) 

MEDGE( SELE, ID = 3 ) 

MEDGE( MESH, MAP, ENTI = "inlet" ) 

MEDGE( SELE, ID ) 

    4 

    5 

    6 

    7 

MEDGE( MESH, MAP, ENTI = "surface" ) 

MEDGE( SELE, ID = 8 ) 

MEDGE( MESH, MAP, ENTI = "outlet" ) 

MEDGE( SELE, ID ) 

   10 

   11 

   12 

   13 

   14 

MEDGE( MESH, MAP, ENTI = "bottom" ) 

MEDGE( SELE, ID ) 

   15 

   16 

   17 

   18 

   19 

MEDGE( MESH, MAP, ENTI = "interface" ) 

END(  ) 

FIPREP(  ) 

//Fluid and solid properties 

DENSITY( ADD, SET = "water", CONS = 0.996 ) 
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CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 

VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 

SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 

SURFACETENSION( ADD, SET = "water", CONS = 73 ) 

DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 

CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 

SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 

ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 

ENTITY( ADD, NAME = "inlet", PLOT ) 

ENTITY( ADD, NAME = "outlet", PLOT ) 

ENTITY( ADD, NAME = "surface", SURF, DEPT = 31, SPIN, STRA, ANG1 = 45, 

ANG2 = 300 ) 

ENTITY( ADD, NAME = "bottom", PLOT ) 

ENTITY( ADD, NAME = "axis", PLOT ) 

ENTITY( ADD, NAME = "silicon", SOLI, PROP = "silicon" ) 

ENTITY( ADD, NAME = "sides", PLOT ) 

ENTITY( ADD, NAME = "interface", PLOT, ATTA = "silicon", NATT = "water" 

) 

BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 

PRESSURE( ADD, MIXE = 1e-11, DISC ) 

DATAPRINT( ADD, CONT ) 

EXECUTION( ADD, NEWJ ) 

PRINTOUT( ADD, NONE, BOUN ) 

OPTIONS( ADD, UPWI ) 

UPWINDING( ADD, STRE ) 

RELAXATION(  ) 

  0.5,   0.5,   0.5,     0,  0.05,   0.1 

BCNODE( ADD, COOR, NODE = 42 ) 

BCNODE( ADD, SURF, NODE = 42, ZERO ) 

BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 

BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 

BCNODE( ADD, UZC, ENTI = "inlet", CONS = 50.0753 ) 

BCNODE( ADD, URC, ENTI = "axis", ZERO ) 

BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 

BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 

BCNODE( ADD, UT, NODE = 42, ZERO ) 

BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 

BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 5.971 ) 

BCNODE( ADD, VELO, ENTI = "silicon", ZERO ) 

PROBLEM( ADD, CYLI, INCO, TRAN, LAMI, NONL, NEWT, MOME, ENER, FREE, 

SING ) 

SOLUTION( ADD, N.R. = 50, KINE = 25, VELC = 0.0001, RESC = 0.0001, 

SURF = 0.001 ) 

TIMEINTEGRATION( ADD, BACK, NSTE = 1000, TSTA = 0, DT = 1e-05, VARI, 

WIND = 9, 

NOFI = 12 ) 

POSTPROCESS( NBLO = 2 ) 

    1,   301,    10 

  301,  1000,     1 

CLIPPING( ADD, MINI ) 

1e-20, 1e-20, 1e-20, 1e-11,    37,     0 

ICNODE( ADD, URC, ENTI = "water", CONS = 20 ) 
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Appendix B:  (Continued) 
 
CREATE( FISO ) 

RUN( FISOLV, IDEN = "t06", BACK, AT = "", TIME = "NOW", COMP ) 

/ File closed at Fri Sep 22 20:31:32 2006. 
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